parent
762a99cc06
commit
6164b8986e
@ -1,46 +0,0 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
import paddle.v2.framework.core as core
|
||||
from op_test import get_numeric_gradient
|
||||
from op_test import create_op
|
||||
|
||||
|
||||
class GetNumericGradientTest(unittest.TestCase):
|
||||
def test_add_op(self):
|
||||
x = np.random.random((10, 1)).astype("float32")
|
||||
y = np.random.random((10, 1)).astype("float32")
|
||||
z = x + y
|
||||
scope = core.Scope()
|
||||
add_op = create_op(scope, "add", {'X': x, 'Y': y}, {'Out': z}, dict())
|
||||
arr = get_numeric_gradient(scope, add_op, {'X': x,
|
||||
'Y': y}, 'X', ['Out'])
|
||||
self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-4)
|
||||
|
||||
def test_softmax_op(self):
|
||||
def stable_softmax(x):
|
||||
"""Compute the softmax of vector x in a numerically stable way."""
|
||||
shiftx = x - np.max(x)
|
||||
exps = np.exp(shiftx)
|
||||
return exps / np.sum(exps)
|
||||
|
||||
def label_softmax_grad(Y, dY):
|
||||
dX = Y * 0.0
|
||||
for i in range(Y.shape[0]):
|
||||
d = np.dot(Y[i, :], dY[i, :])
|
||||
dX[i, :] = Y[i, :] * (dY[i, :] - d)
|
||||
return dX
|
||||
|
||||
X = np.random.random((2, 2)).astype("float32")
|
||||
Y = np.apply_along_axis(stable_softmax, 1, X)
|
||||
dY = np.ones(Y.shape)
|
||||
dX = label_softmax_grad(Y, dY)
|
||||
|
||||
scope = core.Scope()
|
||||
softmax_op = create_op(scope, "softmax", {"X": X}, {"Y": Y}, dict())
|
||||
|
||||
arr = get_numeric_gradient(scope, softmax_op, {"X": X}, "X", "Y")
|
||||
np.testing.assert_almost_equal(arr, dX, decimal=1e-2)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue