commit
61f4baa13a
@ -0,0 +1,240 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
from framework import Program
|
||||
from executor import global_scope
|
||||
from . import core
|
||||
|
||||
|
||||
class InferenceTranspiler:
|
||||
def transpile(self, program, place, scope=None):
|
||||
'''
|
||||
Transpile the program. Support only fuse batch normalization now.
|
||||
|
||||
:param program: program to transpile
|
||||
:type program: Program
|
||||
:param place: inference place
|
||||
:type place: Place
|
||||
:param scope: inference scope
|
||||
:type scope: Scope or None
|
||||
'''
|
||||
if not isinstance(program, Program):
|
||||
raise TypeError("program should be as Program type")
|
||||
if not isinstance(place, core.CPUPlace) and not isinstance(
|
||||
place, core.CUDAPlace):
|
||||
raise TypeError("place should be as CPUPlace/CUDAPlace type")
|
||||
if scope is None:
|
||||
scope = global_scope()
|
||||
if not isinstance(scope, core.Scope):
|
||||
raise TypeError("scope should be as Scope type or None")
|
||||
self.fuse_batch_norm(program, place, scope)
|
||||
|
||||
def fuse_batch_norm(self, program, place, scope):
|
||||
'''
|
||||
Transpile the program by fused batch normalization.
|
||||
|
||||
The batch normalization followed the convolution or fully connected layer
|
||||
can be integrated with them. Doing so will give us a forward acceleration,
|
||||
especially in environments like mobile or embedded.
|
||||
|
||||
For input X:
|
||||
- Conv process: X = input * W + bias
|
||||
- Batch norm process: X' = (X - mean) / std
|
||||
- Scale Process: Y = a * X' + b
|
||||
|
||||
After fuse into one operation:
|
||||
|
||||
Y = (input * W + bias - mean) / std * a + b
|
||||
= input * a * W / std + ((bias - mean) / std * a + b)
|
||||
|
||||
The operator transformation is:
|
||||
- before:
|
||||
- conv->batch_norm->any_other_op (bias == 0)
|
||||
- conv->elementwise_add->batch_norm->any_other_op (bias != 0)
|
||||
- after:
|
||||
- conv->elementwise_add->any_other_op
|
||||
|
||||
The transpile stages are:
|
||||
1. insert elementwise_add op when bias == 0.
|
||||
2. fuse the batch_norm's parameters to conv and elementwise_add operators.
|
||||
3. remove batch_norm ops which are not used in any other ops.
|
||||
4. adjust the input of any_other_op to be the output of elementwise_add operator.
|
||||
5. remove unused variables.
|
||||
|
||||
:param program: program to transpile
|
||||
:type program: Program
|
||||
:param place: inference place
|
||||
:type place: Place
|
||||
:param scope: inference scope
|
||||
:type scope: Scope
|
||||
'''
|
||||
self.scope = scope
|
||||
self.place = place
|
||||
self.block = program.block(0)
|
||||
self.input_map = {} # store the input names should be adjusted
|
||||
|
||||
i = 0
|
||||
while i < len(self.block.ops):
|
||||
current_op = self.block.ops[i]
|
||||
# TODO(luotao1): consider only conv2d now. fc would be delt later.
|
||||
if current_op.type in ['conv2d']:
|
||||
# TODO(luotao1): consider single chain network now.
|
||||
# For branch network, we counldn't use block.ops[i + 1] as
|
||||
# the judgment condition.
|
||||
next_op = self.block.ops[i + 1]
|
||||
# conv2d without bias
|
||||
if (next_op.type == 'batch_norm'):
|
||||
# insert bias op
|
||||
bias_op = self._insert_bias_op(i + 1, current_op, next_op)
|
||||
# fuse batch_norm
|
||||
self._fuse_param(current_op, next_op, bias_op, 0)
|
||||
# remove batch_norm_op
|
||||
self.block.remove_op(i + 2)
|
||||
i = i + 1
|
||||
# conv2d with bias, the next_op.type is elementwise_add
|
||||
elif (next_op.type == 'elementwise_add'):
|
||||
next_next_op = self.block.ops[i + 2]
|
||||
if (next_next_op.type == 'batch_norm'):
|
||||
# fuse batch_norm
|
||||
self._fuse_param(current_op, next_next_op, next_op, 1)
|
||||
# remove batch_norm_op
|
||||
self.block.remove_op(i + 2)
|
||||
i = i + 1
|
||||
i = i + 1
|
||||
|
||||
self._adjust_input()
|
||||
self._remove_unused_var()
|
||||
# TODO(luotao): use clone() method to flush the program.desc in force,
|
||||
# since some large program.desc will not be flushed immediately.
|
||||
# And a better solution will be considered later.
|
||||
program = program.clone()
|
||||
|
||||
# ====================== private transpiler functions =====================
|
||||
def _insert_bias_op(self, index, current_op, bn_op):
|
||||
'''
|
||||
Construct elementwise_add operator for adding bias
|
||||
and insert it into program.
|
||||
|
||||
:param index: insert location of bias_op
|
||||
:type index: Int
|
||||
:param current_op: current operator (conv or fc)
|
||||
:type current_op: Operator
|
||||
:param bn_op: batch norm operator
|
||||
:type bn_op: Operator
|
||||
:return: bias_op
|
||||
:rtype: Operator
|
||||
'''
|
||||
# The input of bias_op is current_op's output and Bias of bn_op
|
||||
# The output of bias_op is bn_op's output
|
||||
x_var = self.block.var(current_op.output("Output")[0])
|
||||
y_var = self.block.var(bn_op.input("Bias")[0])
|
||||
out_var = self.block.var(bn_op.output("Y")[0])
|
||||
|
||||
bias_op = self.block.insert_op(
|
||||
index,
|
||||
type="elementwise_add",
|
||||
inputs={"X": x_var,
|
||||
"Y": y_var},
|
||||
outputs={"Out": out_var},
|
||||
attrs={"axis": 1}) # dim_start=1
|
||||
return bias_op
|
||||
|
||||
def _fuse_param(self, current_op, bn_op, bias_op, with_bias):
|
||||
'''
|
||||
fuse the batch_norm_op' parameters to current_op (conv or fc)
|
||||
|
||||
:param current_op: current operator (conv or fc)
|
||||
:type current_op: Operator
|
||||
:param bn_op: batch norm operator
|
||||
:type bn_op: Operator
|
||||
:param bias_op: elementwise_add operator for adding bias
|
||||
:type bias_op: Operator
|
||||
:param with_bias: If current operator has bias, with_bias = 1; otherwise 0.
|
||||
:type with_bias: Int
|
||||
'''
|
||||
|
||||
def _update_param(op, old_param_name, new_param):
|
||||
# For the sake of remaining the original variables the same as before,
|
||||
# create new variables in scope to store the new parameters.
|
||||
old_param_name = old_param_name[0]
|
||||
old_var = self.block.vars[old_param_name]
|
||||
new_param_name = old_param_name + '_fuse_bn'
|
||||
new_var = self.block.create_parameter(
|
||||
name=new_param_name.encode('ascii'),
|
||||
type=old_var.type,
|
||||
dtype=old_var.dtype,
|
||||
shape=old_var.shape)
|
||||
op.rename_input(old_param_name, new_param_name)
|
||||
self.scope.var(new_param_name)
|
||||
|
||||
tensor = self.scope.find_var(new_param_name).get_tensor()
|
||||
tensor.set(np.array(new_param), self.place)
|
||||
|
||||
def _load_param(param_name):
|
||||
return np.array(self.scope.find_var(param_name[0]).get_tensor())
|
||||
|
||||
bias_bn = _load_param(bn_op.input("Bias")) #Bias
|
||||
scale_bn = _load_param(bn_op.input("Scale")) #Scale
|
||||
mean_bn = _load_param(bn_op.input("Mean")) #Mean
|
||||
var_bn = _load_param(bn_op.input("Variance")) #Variance
|
||||
|
||||
# TODO(luotao1): consider only conv2d now. fc would be delt later.
|
||||
current_param = _load_param(current_op.input("Filter"))
|
||||
std_bn = np.float32(np.sqrt(np.add(var_bn, 1e-5)))
|
||||
tmp = np.float32(np.divide(scale_bn, std_bn))
|
||||
|
||||
# add bias of batch_norm_op to conv2d
|
||||
if with_bias:
|
||||
bias = _load_param(bias_op.input("Y"))
|
||||
else:
|
||||
bias = np.zeros(bias_bn.shape)
|
||||
bias = np.float32(
|
||||
np.add(np.multiply(np.subtract(bias, mean_bn), tmp), bias_bn))
|
||||
|
||||
# re-compute weight of conv2d
|
||||
tmp = tmp.reshape(tmp.shape[0], -1)
|
||||
dst_param = current_param.reshape((tmp.shape[0], -1))
|
||||
dst_param = np.float32(np.multiply(dst_param, tmp))
|
||||
dst_param = dst_param.reshape(current_param.shape)
|
||||
|
||||
# update parameters
|
||||
_update_param(current_op, current_op.input("Filter"), dst_param)
|
||||
_update_param(bias_op, bias_op.input("Y"), bias)
|
||||
|
||||
# collect the renamed input
|
||||
self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0]
|
||||
|
||||
def _adjust_input(self):
|
||||
for i in range(len(self.block.ops)):
|
||||
current_op = self.block.ops[i]
|
||||
for input_arg in current_op.input_arg_names:
|
||||
if input_arg in self.input_map:
|
||||
current_op.rename_input(input_arg,
|
||||
self.input_map[input_arg])
|
||||
|
||||
def _remove_unused_var(self):
|
||||
'''
|
||||
remove unused varibles in program
|
||||
'''
|
||||
args = []
|
||||
for i in range(len(self.block.ops)):
|
||||
current_op = self.block.ops[i]
|
||||
args += current_op.input_arg_names
|
||||
args += current_op.output_arg_names
|
||||
args = list(set(args)) # unique the input and output arguments
|
||||
|
||||
for var in self.block.vars.keys():
|
||||
if var not in args:
|
||||
self.block.remove_var(var)
|
Loading…
Reference in new issue