Merge branch 'layer-test' of https://github.com/jacquesqiao/Paddle into rnn
commit
61f56fc00d
File diff suppressed because it is too large
Load Diff
@ -1,4 +1,3 @@
|
||||
add_test(NAME layer_test
|
||||
add_test(NAME test_v2_layer
|
||||
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
|
||||
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/layer_test.py
|
||||
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
|
||||
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_layer.py
|
||||
|
@ -1,108 +0,0 @@
|
||||
# Copyright PaddlePaddle contributors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import difflib
|
||||
import unittest
|
||||
|
||||
import paddle.trainer_config_helpers as conf_helps
|
||||
import paddle.v2.activation as activation
|
||||
import paddle.v2.attr as attr
|
||||
import paddle.v2.data_type as data_type
|
||||
import paddle.v2.layer as layer
|
||||
from paddle.trainer_config_helpers.config_parser_utils import \
|
||||
parse_network_config as parse_network
|
||||
|
||||
|
||||
class CostLayerTest(unittest.TestCase):
|
||||
def test_cost_layer(self):
|
||||
pixel = layer.data(name='pixel', type=data_type.dense_vector(784))
|
||||
label = layer.data(name='label', type=data_type.integer_value(10))
|
||||
weight = layer.data(name='weight', type=data_type.dense_vector(10))
|
||||
score = layer.data(name='score', type=data_type.dense_vector(1))
|
||||
hidden = layer.fc(input=pixel,
|
||||
size=100,
|
||||
act=activation.Sigmoid(),
|
||||
param_attr=attr.Param(name='hidden'))
|
||||
inference = layer.fc(input=hidden, size=10, act=activation.Softmax())
|
||||
|
||||
cost1 = layer.classification_cost(input=inference, label=label)
|
||||
cost2 = layer.classification_cost(
|
||||
input=inference, label=label, weight=weight)
|
||||
cost3 = layer.cross_entropy_cost(input=inference, label=label)
|
||||
cost4 = layer.cross_entropy_with_selfnorm_cost(
|
||||
input=inference, label=label)
|
||||
cost5 = layer.regression_cost(input=inference, label=label)
|
||||
cost6 = layer.regression_cost(
|
||||
input=inference, label=label, weight=weight)
|
||||
cost7 = layer.multi_binary_label_cross_entropy_cost(
|
||||
input=inference, label=label)
|
||||
cost8 = layer.rank_cost(left=score, right=score, label=score)
|
||||
cost9 = layer.lambda_cost(input=inference, score=score)
|
||||
cost10 = layer.sum_cost(input=inference)
|
||||
cost11 = layer.huber_cost(input=score, label=label)
|
||||
|
||||
print layer.parse_network(cost1, cost2)
|
||||
print layer.parse_network(cost3, cost4)
|
||||
print layer.parse_network(cost5, cost6)
|
||||
print layer.parse_network(cost7, cost8, cost9, cost10, cost11)
|
||||
|
||||
|
||||
class RNNTest(unittest.TestCase):
|
||||
def test_simple_rnn(self):
|
||||
dict_dim = 10
|
||||
word_dim = 8
|
||||
hidden_dim = 8
|
||||
|
||||
def test_old_rnn():
|
||||
def step(y):
|
||||
mem = conf_helps.memory(name="rnn_state", size=hidden_dim)
|
||||
out = conf_helps.fc_layer(
|
||||
input=[y, mem],
|
||||
size=hidden_dim,
|
||||
act=activation.Tanh(),
|
||||
bias_attr=True,
|
||||
name="rnn_state")
|
||||
return out
|
||||
|
||||
def test():
|
||||
data1 = conf_helps.data_layer(name="word", size=dict_dim)
|
||||
embd = conf_helps.embedding_layer(input=data1, size=word_dim)
|
||||
conf_helps.recurrent_group(name="rnn", step=step, input=embd)
|
||||
|
||||
return str(parse_network(test))
|
||||
|
||||
def test_new_rnn():
|
||||
def new_step(y):
|
||||
mem = layer.memory(name="rnn_state", size=hidden_dim)
|
||||
out = layer.fc(input=[mem],
|
||||
step_input=y,
|
||||
size=hidden_dim,
|
||||
act=activation.Tanh(),
|
||||
bias_attr=True,
|
||||
name="rnn_state")
|
||||
return out.to_proto(dict())
|
||||
|
||||
data1 = layer.data(
|
||||
name="word", type=data_type.integer_value(dict_dim))
|
||||
embd = layer.embedding(input=data1, size=word_dim)
|
||||
rnn_layer = layer.recurrent_group(
|
||||
name="rnn", step=new_step, input=embd)
|
||||
return str(layer.parse_network(rnn_layer))
|
||||
|
||||
diff = difflib.unified_diff(test_old_rnn().splitlines(1),
|
||||
test_new_rnn().splitlines(1))
|
||||
print ''.join(diff)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,63 @@
|
||||
# Copyright PaddlePaddle contributors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import difflib
|
||||
import unittest
|
||||
|
||||
import paddle.trainer_config_helpers as conf_helps
|
||||
import paddle.v2.activation as activation
|
||||
import paddle.v2.attr as attr
|
||||
import paddle.v2.data_type as data_type
|
||||
import paddle.v2.layer as layer
|
||||
from paddle.trainer_config_helpers.config_parser_utils import \
|
||||
parse_network_config as parse_network
|
||||
|
||||
pixel = layer.data(name='pixel', type=data_type.dense_vector(784))
|
||||
label = layer.data(name='label', type=data_type.integer_value(10))
|
||||
weight = layer.data(name='weight', type=data_type.dense_vector(10))
|
||||
score = layer.data(name='score', type=data_type.dense_vector(1))
|
||||
hidden = layer.fc(input=pixel,
|
||||
size=100,
|
||||
act=activation.Sigmoid(),
|
||||
param_attr=attr.Param(name='hidden'))
|
||||
inference = layer.fc(input=hidden, size=10, act=activation.Softmax())
|
||||
|
||||
|
||||
class CostLayerTest(unittest.TestCase):
|
||||
def test_cost_layer(self):
|
||||
cost1 = layer.classification_cost(input=inference, label=label)
|
||||
cost2 = layer.classification_cost(
|
||||
input=inference, label=label, weight=weight)
|
||||
cost3 = layer.cross_entropy_cost(input=inference, label=label)
|
||||
cost4 = layer.cross_entropy_with_selfnorm_cost(
|
||||
input=inference, label=label)
|
||||
cost5 = layer.regression_cost(input=inference, label=label)
|
||||
cost6 = layer.regression_cost(
|
||||
input=inference, label=label, weight=weight)
|
||||
cost7 = layer.multi_binary_label_cross_entropy_cost(
|
||||
input=inference, label=label)
|
||||
cost8 = layer.rank_cost(left=score, right=score, label=score)
|
||||
cost9 = layer.lambda_cost(input=inference, score=score)
|
||||
cost10 = layer.sum_cost(input=inference)
|
||||
cost11 = layer.huber_cost(input=score, label=label)
|
||||
|
||||
print dir(layer)
|
||||
layer.parse_network(cost1, cost2)
|
||||
print dir(layer)
|
||||
#print layer.parse_network(cost3, cost4)
|
||||
#print layer.parse_network(cost5, cost6)
|
||||
#print layer.parse_network(cost7, cost8, cost9, cost10, cost11)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue