Support quantizing program_desc (#29526)
* Support quantizing program_desc, test=developrevert-31562-mean
parent
47d10c55d5
commit
62f455e023
@ -0,0 +1,177 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import collections
|
||||
import logging
|
||||
import numpy as np
|
||||
from .... import core
|
||||
from ....framework import Program, Operator, Variable, program_guard
|
||||
from .... import unique_name
|
||||
from ....layer_helper import LayerHelper
|
||||
from ....param_attr import ParamAttr
|
||||
from ....initializer import Constant
|
||||
from ....log_helper import get_logger
|
||||
|
||||
_logger = get_logger(
|
||||
__name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
|
||||
|
||||
|
||||
class QuantizeTranspilerV2(object):
|
||||
def __init__(self,
|
||||
weight_bits=8,
|
||||
activation_bits=8,
|
||||
weight_quantize_type='abs_max',
|
||||
activation_quantize_type='abs_max',
|
||||
quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
|
||||
skip_pattern=['skip_quant']):
|
||||
"""
|
||||
Add quant_dequant op before the quantized op to quantize the fluid Program.
|
||||
It is a patch for distributed quantization, we will support others module for
|
||||
distributed quantization.
|
||||
|
||||
Args:
|
||||
weight_bits(int): the bit of quantized weight.
|
||||
activation_bits(int): the bit of quantized activation.
|
||||
weight_quantize_type(str): the quantization type for weight.
|
||||
Only support to be 'abs_max' for now.
|
||||
activation_quantize_type(str): the quantization type for activation.
|
||||
Only support to be 'abs_max' for now.
|
||||
quantizable_op_type(str): set the op type for quantization.
|
||||
skip_pattern(str|list): The user-defined quantization skip pattern, which
|
||||
will be presented in the name scope of an op. When the skip pattern is
|
||||
detected in an op's name scope, the corresponding op will not be quantized.
|
||||
"""
|
||||
self._weight_bits = weight_bits
|
||||
self._activation_bits = activation_bits
|
||||
|
||||
assert activation_quantize_type == "abs_max", \
|
||||
"activation_quantize_type should be abs_max for now."
|
||||
assert weight_quantize_type == "abs_max", \
|
||||
"weight_quantize_type should be abs_max for now."
|
||||
self._activation_quantize_type = activation_quantize_type
|
||||
self._weight_quantize_type = weight_quantize_type
|
||||
|
||||
self._quantizable_ops = quantizable_op_type
|
||||
self._quantizable_grad_ops = [
|
||||
'%s_grad' % (op) for op in self._quantizable_ops
|
||||
]
|
||||
|
||||
self._skip_pattern = skip_pattern
|
||||
self.helper = LayerHelper(self.__class__.__name__)
|
||||
|
||||
def apply(self, program, startup_program):
|
||||
"""
|
||||
Apply quantization to fluid Program.
|
||||
|
||||
Args:
|
||||
program(Program): the train or test program to be quantized.
|
||||
startup_program(Program): the corresponding startup_program.
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
assert isinstance(program, Program), \
|
||||
"program must be the instance of Program"
|
||||
assert isinstance(startup_program, Program), \
|
||||
"startup_program must be the instance of Program"
|
||||
|
||||
quant_dequant_vars = [
|
||||
collections.OrderedDict() for _ in range(len(program.blocks))
|
||||
]
|
||||
with program_guard(program, startup_program):
|
||||
for block in program.blocks:
|
||||
ops = list(block.ops)
|
||||
for op in ops:
|
||||
if op.type in self._quantizable_ops and \
|
||||
(not self._is_skip_quant(op)):
|
||||
self._transform_forward(block, op, quant_dequant_vars)
|
||||
for block in program.blocks:
|
||||
ops = list(block.ops)
|
||||
for op in ops:
|
||||
if op.type in self._quantizable_grad_ops and \
|
||||
(not self._is_skip_quant(op)):
|
||||
self._transform_backward(block, op, quant_dequant_vars)
|
||||
|
||||
def _is_skip_quant(self, op):
|
||||
"""
|
||||
Analyse whether the op should skip quantization or not.
|
||||
"""
|
||||
user_skipped = False
|
||||
if isinstance(self._skip_pattern, list):
|
||||
user_skipped = op.has_attr("op_namescope") and \
|
||||
any(pattern in op.attr("op_namescope") \
|
||||
for pattern in self._skip_pattern)
|
||||
elif isinstance(self._skip_pattern, str):
|
||||
user_skipped = op.has_attr("op_namescope") and \
|
||||
op.attr("op_namescope").find(
|
||||
self._skip_pattern) != -1
|
||||
return user_skipped
|
||||
|
||||
def _transform_forward(self, block, op, quant_dequant_vars):
|
||||
op._set_attr("quantization_type", "qat_with_weight")
|
||||
idx = block.ops.index(op)
|
||||
block_id = block.idx
|
||||
for in_name in op.input_arg_names:
|
||||
if in_name in quant_dequant_vars[block_id]:
|
||||
quant_dequant_var = quant_dequant_vars[block_id][in_name]
|
||||
else:
|
||||
in_var = block.var(in_name)
|
||||
quant_bits = self._weight_bits if in_var.persistable \
|
||||
else self._activation_bits
|
||||
quant_type = self._weight_quantize_type if in_var.persistable \
|
||||
else self._activation_quantize_type
|
||||
if quant_type == "abs_max":
|
||||
quant_dequant_var = self._insert_quant_dequant_abs_max_op(
|
||||
block, idx, in_var, quant_bits)
|
||||
else:
|
||||
_logger.error("Quant_type only supported to be abs_max")
|
||||
quant_dequant_vars[block_id][in_name] = quant_dequant_var
|
||||
op._rename_input(in_name, quant_dequant_var.name)
|
||||
|
||||
def _transform_backward(self, block, op, quant_dequant_vars):
|
||||
block_id = block.idx
|
||||
no_dequanted_input_vars = True
|
||||
for name in op.input_arg_names:
|
||||
if name in quant_dequant_vars[block_id]:
|
||||
dequant_var = quant_dequant_vars[block_id][name]
|
||||
op._rename_input(name, dequant_var.name)
|
||||
no_dequanted_input_vars = False
|
||||
if no_dequanted_input_vars:
|
||||
raise ValueError("There is no dequanted inputs for op %s." %
|
||||
(op.type))
|
||||
|
||||
def _insert_quant_dequant_abs_max_op(self, block, idx, in_var, quant_bits):
|
||||
quant_dequant_var = block.create_var(
|
||||
type=in_var.type,
|
||||
name="{}.quant_dequant".format(in_var.name),
|
||||
shape=in_var.shape,
|
||||
dtype=in_var.dtype)
|
||||
scale_var = self.helper.create_parameter(
|
||||
attr=ParamAttr(
|
||||
name="{}.quant_dequant.scale".format(in_var.name),
|
||||
initializer=Constant(0.001),
|
||||
trainable=False),
|
||||
shape=[1],
|
||||
dtype=in_var.dtype)
|
||||
scale_var.stop_gradient = True
|
||||
|
||||
inputs = {'X': in_var}
|
||||
outputs = {'Out': quant_dequant_var, 'OutScale': scale_var}
|
||||
attrs = {'bit_length': quant_bits}
|
||||
block._insert_op(
|
||||
idx,
|
||||
type='fake_quantize_dequantize_abs_max',
|
||||
attrs=attrs,
|
||||
inputs=inputs,
|
||||
outputs=outputs)
|
||||
return quant_dequant_var
|
||||
@ -0,0 +1,163 @@
|
||||
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
|
||||
#
|
||||
# licensed under the apache license, version 2.0 (the "license");
|
||||
# you may not use this file except in compliance with the license.
|
||||
# you may obtain a copy of the license at
|
||||
#
|
||||
# http://www.apache.org/licenses/license-2.0
|
||||
#
|
||||
# unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the license is distributed on an "as is" basis,
|
||||
# without warranties or conditions of any kind, either express or implied.
|
||||
# see the license for the specific language governing permissions and
|
||||
# limitations under the license.
|
||||
|
||||
import os
|
||||
import unittest
|
||||
import random
|
||||
import numpy as np
|
||||
import six
|
||||
import paddle.fluid as fluid
|
||||
import paddle
|
||||
from paddle.fluid.framework import IrGraph
|
||||
from paddle.fluid.contrib.slim.quantization.quantize_transpiler_v2 import QuantizeTranspilerV2
|
||||
from paddle.fluid import core
|
||||
|
||||
paddle.enable_static()
|
||||
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
os.environ["CPU_NUM"] = "1"
|
||||
|
||||
|
||||
def conv_net(img, label):
|
||||
conv_pool_1 = fluid.nets.simple_img_conv_pool(
|
||||
input=img,
|
||||
filter_size=5,
|
||||
num_filters=20,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
pool_type='max',
|
||||
act="relu")
|
||||
conv_pool_2 = fluid.nets.simple_img_conv_pool(
|
||||
input=conv_pool_1,
|
||||
filter_size=5,
|
||||
num_filters=50,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
pool_type='avg',
|
||||
act="relu")
|
||||
with fluid.name_scope("skip_quant"):
|
||||
hidden = fluid.layers.fc(input=conv_pool_1, size=100, act='relu')
|
||||
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
|
||||
loss = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
avg_loss = fluid.layers.mean(loss)
|
||||
return avg_loss
|
||||
|
||||
|
||||
class TestQuantizeProgramPass(unittest.TestCase):
|
||||
def quantize_program(self,
|
||||
use_cuda,
|
||||
seed,
|
||||
activation_quant_type='abs_max',
|
||||
weight_quant_type='abs_max',
|
||||
for_ci=False):
|
||||
def build_program(main, startup, is_test):
|
||||
main.random_seed = seed
|
||||
startup.random_seed = seed
|
||||
with fluid.unique_name.guard():
|
||||
with fluid.program_guard(main, startup):
|
||||
img = fluid.layers.data(
|
||||
name='image', shape=[1, 28, 28], dtype='float32')
|
||||
label = fluid.layers.data(
|
||||
name='label', shape=[1], dtype='int64')
|
||||
loss = conv_net(img, label)
|
||||
if not is_test:
|
||||
opt = fluid.optimizer.Adam(learning_rate=0.0001)
|
||||
opt.minimize(loss)
|
||||
return [img, label], loss
|
||||
|
||||
random.seed(0)
|
||||
np.random.seed(0)
|
||||
|
||||
train_program = fluid.Program()
|
||||
startup_program = fluid.Program()
|
||||
test_program = fluid.Program()
|
||||
feeds, loss = build_program(train_program, startup_program, False)
|
||||
build_program(test_program, startup_program, True)
|
||||
test_program = test_program.clone(for_test=True)
|
||||
|
||||
if not for_ci:
|
||||
train_graph = IrGraph(
|
||||
core.Graph(train_program.desc), for_test=False)
|
||||
train_graph.draw('.', 'train_program_1')
|
||||
test_graph = IrGraph(core.Graph(test_program.desc), for_test=True)
|
||||
test_graph.draw('.', 'test_program_1')
|
||||
|
||||
qt = QuantizeTranspilerV2(
|
||||
activation_quantize_type=activation_quant_type,
|
||||
weight_quantize_type=weight_quant_type,
|
||||
quantizable_op_type=[
|
||||
'conv2d', 'depthwise_conv2d', 'mul', 'pool2d'
|
||||
])
|
||||
qt.apply(train_program, startup_program)
|
||||
qt.apply(test_program, startup_program)
|
||||
|
||||
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
scope = fluid.Scope()
|
||||
with fluid.scope_guard(scope):
|
||||
exe.run(startup_program)
|
||||
if not for_ci:
|
||||
train_graph = IrGraph(
|
||||
core.Graph(train_program.desc), for_test=False)
|
||||
train_graph.draw('.', 'train_program_2')
|
||||
test_graph = IrGraph(core.Graph(test_program.desc), for_test=True)
|
||||
test_graph.draw('.', 'test_program_2')
|
||||
|
||||
build_strategy = fluid.BuildStrategy()
|
||||
build_strategy.memory_optimize = False
|
||||
build_strategy.enable_inplace = False
|
||||
build_strategy.fuse_all_reduce_ops = False
|
||||
binary = fluid.CompiledProgram(train_program).with_data_parallel(
|
||||
loss_name=loss.name, build_strategy=build_strategy)
|
||||
iters = 2
|
||||
batch_size = 8
|
||||
|
||||
train_reader = paddle.batch(
|
||||
paddle.dataset.mnist.train(), batch_size=batch_size)
|
||||
feeder = fluid.DataFeeder(feed_list=feeds, place=place)
|
||||
with fluid.scope_guard(scope):
|
||||
for _ in range(iters):
|
||||
data = next(train_reader())
|
||||
loss_v = exe.run(binary,
|
||||
feed=feeder.feed(data),
|
||||
fetch_list=[loss])
|
||||
if not for_ci:
|
||||
print('{}: {}'.format('loss', loss_v))
|
||||
|
||||
if not for_ci:
|
||||
with fluid.scope_guard(scope):
|
||||
fluid.io.save_inference_model('./infer_model',
|
||||
['image', 'label'], [loss], exe,
|
||||
test_program)
|
||||
|
||||
def test_quantize_program_gpu(self):
|
||||
if fluid.core.is_compiled_with_cuda():
|
||||
self.quantize_program(
|
||||
use_cuda=True,
|
||||
seed=1,
|
||||
activation_quant_type='abs_max',
|
||||
weight_quant_type='abs_max',
|
||||
for_ci=True)
|
||||
|
||||
def test_quantize_program_cpu(self):
|
||||
self.quantize_program(
|
||||
use_cuda=False,
|
||||
seed=2,
|
||||
activation_quant_type='abs_max',
|
||||
weight_quant_type='abs_max',
|
||||
for_ci=True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
Loading…
Reference in new issue