parent
3d28291d69
commit
632ad5c9e2
@ -1,3 +1,7 @@
|
||||
add_test(NAME test_v2_layer
|
||||
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
|
||||
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_layer.py
|
||||
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_layer.py)
|
||||
|
||||
add_test(NAME test_v2_rnn_layer
|
||||
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
|
||||
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_rnn_layer.py)
|
||||
|
@ -0,0 +1,143 @@
|
||||
# Copyright PaddlePaddle contributors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import difflib
|
||||
import unittest
|
||||
|
||||
import paddle.trainer_config_helpers as conf_helps
|
||||
import paddle.v2.activation as activation
|
||||
import paddle.v2.data_type as data_type
|
||||
import paddle.v2.layer as layer
|
||||
from paddle.trainer_config_helpers.config_parser_utils import \
|
||||
parse_network_config as parse_network
|
||||
|
||||
|
||||
class RNNTest(unittest.TestCase):
|
||||
def test_simple_rnn(self):
|
||||
dict_dim = 10
|
||||
word_dim = 8
|
||||
hidden_dim = 8
|
||||
|
||||
def parse_old_rnn():
|
||||
def step(y):
|
||||
mem = conf_helps.memory(name="rnn_state", size=hidden_dim)
|
||||
out = conf_helps.fc_layer(
|
||||
input=[y, mem],
|
||||
size=hidden_dim,
|
||||
act=activation.Tanh(),
|
||||
bias_attr=True,
|
||||
name="rnn_state")
|
||||
return out
|
||||
|
||||
def test():
|
||||
data = conf_helps.data_layer(name="word", size=dict_dim)
|
||||
embd = conf_helps.embedding_layer(input=data, size=word_dim)
|
||||
conf_helps.recurrent_group(name="rnn", step=step, input=embd)
|
||||
|
||||
return str(parse_network(test))
|
||||
|
||||
def parse_new_rnn():
|
||||
def new_step(y):
|
||||
mem = layer.memory(name="rnn_state", size=hidden_dim)
|
||||
out = layer.fc(input=[y, mem],
|
||||
size=hidden_dim,
|
||||
act=activation.Tanh(),
|
||||
bias_attr=True,
|
||||
name="rnn_state")
|
||||
return out
|
||||
|
||||
data = layer.data(
|
||||
name="word", type=data_type.integer_value(dict_dim))
|
||||
embd = layer.embedding(input=data, size=word_dim)
|
||||
rnn_layer = layer.recurrent_group(
|
||||
name="rnn", step=new_step, input=embd)
|
||||
return str(layer.parse_network(rnn_layer))
|
||||
|
||||
diff = difflib.unified_diff(parse_old_rnn().splitlines(1),
|
||||
parse_new_rnn().splitlines(1))
|
||||
print ''.join(diff)
|
||||
|
||||
def test_sequence_rnn_multi_input(self):
|
||||
dict_dim = 10
|
||||
word_dim = 8
|
||||
hidden_dim = 8
|
||||
label_dim = 3
|
||||
|
||||
def parse_old_rnn():
|
||||
def step(y, wid):
|
||||
z = conf_helps.embedding_layer(input=wid, size=word_dim)
|
||||
mem = conf_helps.memory(name="rnn_state", size=hidden_dim)
|
||||
out = conf_helps.fc_layer(
|
||||
input=[y, z, mem],
|
||||
size=hidden_dim,
|
||||
act=conf_helps.TanhActivation(),
|
||||
bias_attr=True,
|
||||
name="rnn_state")
|
||||
return out
|
||||
|
||||
def test():
|
||||
data = conf_helps.data_layer(name="word", size=dict_dim)
|
||||
label = conf_helps.data_layer(name="label", size=label_dim)
|
||||
emb = conf_helps.embedding_layer(input=data, size=word_dim)
|
||||
out = conf_helps.recurrent_group(
|
||||
name="rnn", step=step, input=[emb, data])
|
||||
|
||||
rep = conf_helps.last_seq(input=out)
|
||||
prob = conf_helps.fc_layer(
|
||||
size=label_dim,
|
||||
input=rep,
|
||||
act=conf_helps.SoftmaxActivation(),
|
||||
bias_attr=True)
|
||||
|
||||
conf_helps.outputs(
|
||||
conf_helps.classification_cost(
|
||||
input=prob, label=label))
|
||||
|
||||
return str(parse_network(test))
|
||||
|
||||
def parse_new_rnn():
|
||||
def step(y, wid):
|
||||
z = layer.embedding(input=wid, size=word_dim)
|
||||
mem = layer.memory(name="rnn_state", size=hidden_dim)
|
||||
out = layer.fc(input=[y, z, mem],
|
||||
size=hidden_dim,
|
||||
act=activation.Tanh(),
|
||||
bias_attr=True,
|
||||
name="rnn_state")
|
||||
return out
|
||||
|
||||
data = layer.data(
|
||||
name="word", type=data_type.dense_vector(dict_dim))
|
||||
label = layer.data(
|
||||
name="label", type=data_type.dense_vector(label_dim))
|
||||
emb = layer.embedding(input=data, size=word_dim)
|
||||
out = layer.recurrent_group(
|
||||
name="rnn", step=step, input=[emb, data])
|
||||
|
||||
rep = layer.last_seq(input=out)
|
||||
prob = layer.fc(size=label_dim,
|
||||
input=rep,
|
||||
act=activation.Softmax(),
|
||||
bias_attr=True)
|
||||
|
||||
cost = layer.classification_cost(input=prob, label=label)
|
||||
|
||||
return str(layer.parse_network(cost))
|
||||
|
||||
diff = difflib.unified_diff(parse_old_rnn().splitlines(1),
|
||||
parse_new_rnn().splitlines(1))
|
||||
print ''.join(diff)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue