commit
636d46a19f
@ -0,0 +1,90 @@
|
||||
import paddle.v2.framework.core as core
|
||||
from paddle.v2.framework.create_op_creation_methods import op_creations
|
||||
import numpy
|
||||
import unittest
|
||||
|
||||
__all__ = ['get_numeric_gradient']
|
||||
|
||||
|
||||
def get_numeric_gradient(op,
|
||||
input_values,
|
||||
output_name,
|
||||
input_to_check,
|
||||
delta=1e-2,
|
||||
local_scope=None):
|
||||
"""
|
||||
Get Numeric Gradient for an operator's input.
|
||||
|
||||
:param op: C++ operator instance, could be an network
|
||||
:param input_values: The input variables. Should be an dictionary, key is
|
||||
variable name. Value is numpy array.
|
||||
:param output_name: The final output variable name.
|
||||
:param input_to_check: The input variable need to get gradient.
|
||||
:param delta: The perturbation value for numeric gradient method. The
|
||||
smaller delta is, the more accurate result will get. But if that delta is
|
||||
too small, it could occur numerical stability problem.
|
||||
:param local_scope: The local scope used for get_numeric_gradient.
|
||||
:return: The gradient array in numpy format.
|
||||
"""
|
||||
if local_scope is None:
|
||||
local_scope = core.Scope()
|
||||
|
||||
# Create all input variable in local_scope
|
||||
for var_name in input_values:
|
||||
var = local_scope.new_var(var_name)
|
||||
tensor = var.get_tensor()
|
||||
tensor.set_dims(input_values[var_name].shape)
|
||||
tensor.alloc_float(core.CPUPlace())
|
||||
tensor.set(input_values[var_name], core.CPUPlace())
|
||||
|
||||
# Create all output variable in local_scope
|
||||
for output in op.outputs():
|
||||
if local_scope.find_var(output) is None:
|
||||
local_scope.new_var(output).get_tensor()
|
||||
|
||||
op.infer_shape(local_scope)
|
||||
|
||||
# allocate output memory
|
||||
for output in op.outputs():
|
||||
local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace())
|
||||
|
||||
# TODO(yuyang18): Only CPU is support now.
|
||||
cpu_ctx = core.DeviceContext.create(core.CPUPlace())
|
||||
|
||||
def get_output():
|
||||
op.run(local_scope, cpu_ctx)
|
||||
return numpy.array(local_scope.find_var(output_name).get_tensor()).sum()
|
||||
|
||||
def product(dim):
|
||||
return reduce(lambda a, b: a * b, dim, 1)
|
||||
|
||||
tensor_to_check = local_scope.find_var(input_to_check).get_tensor()
|
||||
tensor_size = product(tensor_to_check.get_dims())
|
||||
gradient_flat = numpy.zeros(shape=(tensor_size, ), dtype='float32')
|
||||
for i in xrange(tensor_size):
|
||||
origin = tensor_to_check.get_float_element(i)
|
||||
x_pos = origin + delta
|
||||
tensor_to_check.set_float_element(i, x_pos)
|
||||
y_pos = get_output()
|
||||
|
||||
x_neg = origin - delta
|
||||
tensor_to_check.set_float_element(i, x_neg)
|
||||
y_neg = get_output()
|
||||
|
||||
tensor_to_check.set_float_element(i, origin) # restore old value
|
||||
gradient_flat[i] = (y_pos - y_neg) / delta / 2
|
||||
return gradient_flat.reshape(tensor_to_check.get_dims())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
class GetNumericGradientTest(unittest.TestCase):
|
||||
def test_add_op(self):
|
||||
add_op = op_creations.add_two(X="X", Y="Y", Out="Z")
|
||||
x = numpy.random.random((10, 1)).astype("float32")
|
||||
y = numpy.random.random((10, 1)).astype("float32")
|
||||
|
||||
arr = get_numeric_gradient(add_op, {'X': x, "Y": y}, 'Z', 'X')
|
||||
self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-2)
|
||||
|
||||
unittest.main()
|
Loading…
Reference in new issue