parent
663a11ac7c
commit
63b38ca40b
@ -0,0 +1,196 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include "paddle/fluid/inference/analysis/analyzer.h"
|
||||
#include <google/protobuf/text_format.h>
|
||||
#include <gtest/gtest.h>
|
||||
#include "paddle/fluid/framework/ir/pass.h"
|
||||
#include "paddle/fluid/inference/analysis/ut_helper.h"
|
||||
#include "paddle/fluid/inference/api/helper.h"
|
||||
#include "paddle/fluid/inference/api/paddle_inference_api.h"
|
||||
#include "paddle/fluid/platform/profiler.h"
|
||||
DEFINE_string(infer_model, "", "model path for LAC");
|
||||
DEFINE_string(infer_data, "", "data file for LAC");
|
||||
DEFINE_int32(batch_size, 1, "batch size.");
|
||||
DEFINE_int32(burning, 0, "Burning before repeat.");
|
||||
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
|
||||
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
|
||||
namespace paddle {
|
||||
namespace inference {
|
||||
namespace analysis {
|
||||
struct DataRecord {
|
||||
std::vector<int64_t> data;
|
||||
std::vector<size_t> lod;
|
||||
// for dataset and nextbatch
|
||||
size_t batch_iter{0};
|
||||
std::vector<std::vector<size_t>> batched_lods;
|
||||
std::vector<std::vector<int64_t>> batched_datas;
|
||||
std::vector<std::vector<int64_t>> datasets;
|
||||
DataRecord() = default;
|
||||
explicit DataRecord(const std::string &path, int batch_size = 1) {
|
||||
Load(path);
|
||||
Prepare(batch_size);
|
||||
batch_iter = 0;
|
||||
}
|
||||
void Load(const std::string &path) {
|
||||
std::ifstream file(path);
|
||||
std::string line;
|
||||
int num_lines = 0;
|
||||
datasets.resize(0);
|
||||
while (std::getline(file, line)) {
|
||||
num_lines++;
|
||||
std::vector<std::string> data;
|
||||
split(line, ';', &data);
|
||||
std::vector<int64_t> words_ids;
|
||||
split_to_int64(data[1], ' ', &words_ids);
|
||||
datasets.emplace_back(words_ids);
|
||||
}
|
||||
}
|
||||
void Prepare(int bs) {
|
||||
if (bs == 1) {
|
||||
batched_datas = datasets;
|
||||
for (auto one_sentence : datasets) {
|
||||
batched_lods.push_back({0, one_sentence.size()});
|
||||
}
|
||||
} else {
|
||||
std::vector<int64_t> one_batch;
|
||||
std::vector<size_t> lod{0};
|
||||
int bs_id = 0;
|
||||
for (auto one_sentence : datasets) {
|
||||
bs_id++;
|
||||
one_batch.insert(one_batch.end(), one_sentence.begin(),
|
||||
one_sentence.end());
|
||||
lod.push_back(lod.back() + one_sentence.size());
|
||||
if (bs_id == bs) {
|
||||
bs_id = 0;
|
||||
batched_datas.push_back(one_batch);
|
||||
batched_lods.push_back(lod);
|
||||
one_batch.clear();
|
||||
one_batch.resize(0);
|
||||
lod.clear();
|
||||
lod.resize(0);
|
||||
lod.push_back(0);
|
||||
}
|
||||
}
|
||||
if (one_batch.size() != 0) {
|
||||
batched_datas.push_back(one_batch);
|
||||
batched_lods.push_back(lod);
|
||||
}
|
||||
}
|
||||
}
|
||||
DataRecord NextBatch() {
|
||||
DataRecord data;
|
||||
data.data = batched_datas[batch_iter];
|
||||
data.lod = batched_lods[batch_iter];
|
||||
batch_iter++;
|
||||
if (batch_iter >= batched_datas.size()) {
|
||||
batch_iter = 0;
|
||||
}
|
||||
return data;
|
||||
}
|
||||
};
|
||||
void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
|
||||
int batch_size) {
|
||||
auto one_batch = data->NextBatch();
|
||||
PaddleTensor input_tensor;
|
||||
input_tensor.name = "word";
|
||||
input_tensor.shape.assign({static_cast<int>(one_batch.data.size()), 1});
|
||||
input_tensor.lod.assign({one_batch.lod});
|
||||
input_tensor.dtype = PaddleDType::INT64;
|
||||
TensorAssignData<int64_t>(&input_tensor, {one_batch.data});
|
||||
PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1));
|
||||
input_slots->assign({input_tensor});
|
||||
}
|
||||
static void PrintTime(const double latency, const int bs, const int repeat) {
|
||||
LOG(INFO) << "===========profile result===========";
|
||||
LOG(INFO) << "batch_size: " << bs << ", repeat: " << repeat
|
||||
<< ", avg latency: " << latency / repeat << "ms";
|
||||
LOG(INFO) << "=====================================";
|
||||
}
|
||||
void BenchAllData(const std::string &model_path, const std::string &data_file,
|
||||
const int batch_size, const int repeat) {
|
||||
NativeConfig config;
|
||||
config.model_dir = model_path;
|
||||
config.use_gpu = false;
|
||||
config.device = 0;
|
||||
config.specify_input_name = true;
|
||||
std::vector<PaddleTensor> input_slots, outputs_slots;
|
||||
DataRecord data(data_file, batch_size);
|
||||
auto predictor =
|
||||
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
|
||||
GetOneBatch(&input_slots, &data, batch_size);
|
||||
for (int i = 0; i < FLAGS_burning; i++) {
|
||||
predictor->Run(input_slots, &outputs_slots);
|
||||
}
|
||||
Timer timer;
|
||||
double sum = 0;
|
||||
for (int i = 0; i < repeat; i++) {
|
||||
for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
|
||||
GetOneBatch(&input_slots, &data, batch_size);
|
||||
timer.tic();
|
||||
predictor->Run(input_slots, &outputs_slots);
|
||||
sum += timer.toc();
|
||||
}
|
||||
}
|
||||
PrintTime(sum, batch_size, repeat);
|
||||
}
|
||||
const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25,
|
||||
25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43,
|
||||
44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39,
|
||||
14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
|
||||
void TestLACPrediction(const std::string &model_path,
|
||||
const std::string &data_file, const int batch_size,
|
||||
const int repeat, bool test_all_data) {
|
||||
if (test_all_data) {
|
||||
BenchAllData(model_path, data_file, batch_size, repeat);
|
||||
return;
|
||||
}
|
||||
NativeConfig config;
|
||||
config.model_dir = model_path;
|
||||
config.use_gpu = false;
|
||||
config.device = 0;
|
||||
config.specify_input_name = true;
|
||||
std::vector<PaddleTensor> input_slots, outputs_slots;
|
||||
DataRecord data(data_file, batch_size);
|
||||
GetOneBatch(&input_slots, &data, batch_size);
|
||||
auto predictor =
|
||||
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
|
||||
for (int i = 0; i < FLAGS_burning; i++) {
|
||||
predictor->Run(input_slots, &outputs_slots);
|
||||
}
|
||||
Timer timer;
|
||||
timer.tic();
|
||||
for (int i = 0; i < repeat; i++) {
|
||||
predictor->Run(input_slots, &outputs_slots);
|
||||
}
|
||||
PrintTime(timer.toc(), batch_size, repeat);
|
||||
EXPECT_EQ(outputs_slots.size(), 1UL);
|
||||
auto &out = outputs_slots[0];
|
||||
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
|
||||
[](int a, int b) { return a * b; });
|
||||
size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t);
|
||||
PADDLE_ENFORCE_GT(size, 0);
|
||||
EXPECT_GE(size, batch1_size);
|
||||
int64_t *pdata = static_cast<int64_t *>(out.data.data());
|
||||
for (size_t i = 0; i < batch1_size; ++i) {
|
||||
EXPECT_EQ(pdata[i], lac_ref_data[i]);
|
||||
}
|
||||
}
|
||||
TEST(Analyzer_LAC, native) {
|
||||
LOG(INFO) << "LAC with native";
|
||||
TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
|
||||
FLAGS_repeat, FLAGS_test_all_data);
|
||||
}
|
||||
} // namespace analysis
|
||||
} // namespace inference
|
||||
} // namespace paddle
|
Loading…
Reference in new issue