|
|
|
@ -178,20 +178,19 @@ def main():
|
|
|
|
|
for pass_id in xrange(PASS_NUM):
|
|
|
|
|
chunk_evaluator.reset(exe)
|
|
|
|
|
for data in train_data():
|
|
|
|
|
outs = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed=feeder.feed(data),
|
|
|
|
|
fetch_list=[avg_cost] + chunk_evaluator.metrics)
|
|
|
|
|
precision, recall, f1_score = chunk_evaluator.eval(exe)
|
|
|
|
|
avg_cost_val = np.array(outs[0])
|
|
|
|
|
precision_val = np.array(precision)
|
|
|
|
|
recall_val = np.array(recall)
|
|
|
|
|
f1_score_val = np.array(f1_score)
|
|
|
|
|
cost, precision, recall, f1_score = exe.run(
|
|
|
|
|
fluid.default_main_program(),
|
|
|
|
|
feed=feeder.feed(data),
|
|
|
|
|
fetch_list=[avg_cost] + chunk_evaluator.metrics)
|
|
|
|
|
pass_precision, pass_recall, pass_f1_score = chunk_evaluator.eval(
|
|
|
|
|
exe)
|
|
|
|
|
|
|
|
|
|
if batch_id % 10 == 0:
|
|
|
|
|
print("avg_cost=" + str(avg_cost_val))
|
|
|
|
|
print("precision_val=" + str(precision_val))
|
|
|
|
|
print("recall_val:" + str(recall_val))
|
|
|
|
|
print("f1_score_val:" + str(f1_score_val))
|
|
|
|
|
print("avg_cost:" + str(cost) + " precision:" + str(
|
|
|
|
|
precision) + " recall:" + str(recall) + " f1_score:" + str(
|
|
|
|
|
f1_score) + " pass_precision:" + str(
|
|
|
|
|
pass_precision) + " pass_recall:" + str(pass_recall)
|
|
|
|
|
+ " pass_f1_score:" + str(pass_f1_score))
|
|
|
|
|
|
|
|
|
|
# exit early for CI
|
|
|
|
|
exit(0)
|
|
|
|
|