enable mkldnn_batch_norm layer

revert-4814-Add_sequence_project_op
tensor-tang 7 years ago
parent 02fdf24115
commit 64eaeba1a8

File diff suppressed because it is too large Load Diff

@ -0,0 +1,136 @@
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLDNNLayer.h"
#include "mkldnn.hpp"
namespace paddle {
typedef mkldnn::batch_normalization_forward bn_fwd;
typedef mkldnn::batch_normalization_backward bn_bwd;
/**
* @brief A subclass of MKLDNNLayer BatchNorm layer.
*
* The config file api is mkldnn_batch_norm
*/
class MKLDNNBatchNormLayer : public MKLDNNLayer {
protected:
// save forward primitive_desc, which can be used backward
std::shared_ptr<bn_fwd::primitive_desc> fwdPD_;
// Epsilon value used in the batch normalization formula.
static const real EPS;
// weight and bias in paddle
std::unique_ptr<Weight> weight_;
std::unique_ptr<Weight> biases_;
// mkldnn use a large buffer store both scale and shift
// which are weight and bias in paddle corresponding.
MatrixPtr valueScaleShift_;
MatrixPtr gradScaleShift_;
// Moving average of mean.
std::unique_ptr<Weight> movingMean_;
// Moving average of variance.
std::unique_ptr<Weight> movingVar_;
// if useGlobalStats_ is true, will use the loaded mean and variance.
// otherwise, calculate mean and variance in every mini-batch.
bool useGlobalStats_;
// used in MKLDNN primitive desc
unsigned flags_;
// use to compute moving mean and variance.
real movingAvgFraction_;
// whether the weight has been init
bool hasInitedWgt_;
// local mean and variance
MKLDNNMatrixPtr mean_; // output of mkldnn: m
MKLDNNMatrixPtr var_; // output of mkldnn: v^2
public:
explicit MKLDNNBatchNormLayer(const LayerConfig& config)
: MKLDNNLayer(config), useGlobalStats_(true), hasInitedWgt_(false) {}
~MKLDNNBatchNormLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void reshape(
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override;
void resetFwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void resetBwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void updateWeights(const UpdateCallback& callback) override;
void convertWeightsFromPaddle() override;
protected:
void initWeight();
/**
* cal moving mean and variance.
* moving = moving * AvgFraction + local * (1 - AvgFraction)
*/
void calMovingMeanAndVar();
/**
* Forward functions: reset buffers(input, weight, output),
* reset primitive descriptor,
* reset pipeline.
*/
void resetFwdBuffers(MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& out);
void resetFwdPD(std::shared_ptr<bn_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr in,
MKLDNNMatrixPtr wgt,
MKLDNNMatrixPtr out);
void resetFwdPipeline(std::vector<mkldnn::primitive>& pipeline,
std::shared_ptr<bn_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& out);
/**
* Backward functions: reset buffers(input, weight, output),
* reset primitive descriptor,
* reset pipeline.
*/
void resetBwdBuffers(MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& out);
void resetBwdPD(std::shared_ptr<bn_bwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& out);
void resetBwdPipeline(std::vector<mkldnn::primitive>& pipeline,
std::shared_ptr<bn_bwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& out);
};
} // namespace paddle
Loading…
Cancel
Save