Merge pull request #3293 from reyoung/feature/uniform_random_op
Add uniform random operatorfixstartbug
commit
6540701f39
@ -0,0 +1,84 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <random>
|
||||
#include <type_traits>
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/framework/operator.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
|
||||
// Use std::random and thrust::random(thrust is a std library in CUDA) to
|
||||
// implement uniform random.
|
||||
template <typename T>
|
||||
class CPUUniformRandomKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* tensor = context.Output<framework::Tensor>(0);
|
||||
T* data = tensor->mutable_data<T>(context.GetPlace());
|
||||
unsigned int seed =
|
||||
static_cast<unsigned int>(context.op_.GetAttr<int>("seed"));
|
||||
std::minstd_rand engine;
|
||||
if (seed == 0) {
|
||||
seed = std::random_device()();
|
||||
}
|
||||
engine.seed(seed);
|
||||
std::uniform_real_distribution<T> dist(
|
||||
static_cast<T>(context.op_.GetAttr<float>("min")),
|
||||
static_cast<T>(context.op_.GetAttr<float>("max")));
|
||||
for (ssize_t i = 0; i < framework::product(tensor->dims()); ++i) {
|
||||
data[i] = dist(engine);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class UniformRandomOp : public framework::OperatorWithKernel {
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext& ctx) const override {
|
||||
PADDLE_ENFORCE(GetAttr<float>("min") < GetAttr<float>("max"),
|
||||
"uniform_random's min must less then max");
|
||||
auto* tensor = ctx.Output<framework::Tensor>(0);
|
||||
auto dims = GetAttr<std::vector<int>>("dims");
|
||||
tensor->Resize(framework::make_ddim(dims));
|
||||
}
|
||||
};
|
||||
|
||||
class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
UniformRandomOpMaker(framework::OpProto* proto,
|
||||
framework::OpAttrChecker* op_checker)
|
||||
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddOutput("Out", "The output tensor of uniform random op");
|
||||
AddComment(R"DOC(Uniform random operator.
|
||||
|
||||
Used to initialize tensor with uniform random generator.
|
||||
)DOC");
|
||||
AddAttr<std::vector<int>>("dims", "the dimension of random tensor");
|
||||
AddAttr<float>("min", "Minimum value of uniform random").SetDefault(-1.0f);
|
||||
AddAttr<float>("max", "Maximun value of uniform random").SetDefault(1.0f);
|
||||
AddAttr<int>("seed",
|
||||
"Random seed of uniform random. "
|
||||
"0 means generate a seed by system")
|
||||
.SetDefault(0);
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_OP(uniform_random, paddle::operators::UniformRandomOp,
|
||||
paddle::operators::UniformRandomOpMaker);
|
||||
REGISTER_OP_CPU_KERNEL(uniform_random,
|
||||
paddle::operators::CPUUniformRandomKernel<float>);
|
@ -0,0 +1,70 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/iterator/counting_iterator.h>
|
||||
#include <thrust/random.h>
|
||||
#include <thrust/transform.h>
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/framework/operator.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename T>
|
||||
struct UniformGenerator {
|
||||
T min_, max_;
|
||||
unsigned int seed_;
|
||||
|
||||
__host__ __device__ UniformGenerator(T min, T max, int seed)
|
||||
: min_(min), max_(max), seed_(seed) {}
|
||||
|
||||
__host__ __device__ T operator()(const unsigned int n) const {
|
||||
thrust::minstd_rand rng;
|
||||
rng.seed(seed_);
|
||||
thrust::uniform_real_distribution<T> dist(min_, max_);
|
||||
rng.discard(n);
|
||||
return dist(rng);
|
||||
}
|
||||
};
|
||||
|
||||
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
|
||||
// Use std::random and thrust::random(thrust is a std library in CUDA) to
|
||||
// implement uniform random.
|
||||
template <typename T>
|
||||
class GPUUniformRandomKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* tensor = context.Output<framework::Tensor>(0);
|
||||
T* data = tensor->mutable_data<T>(context.GetPlace());
|
||||
unsigned int seed =
|
||||
static_cast<unsigned int>(context.op_.GetAttr<int>("seed"));
|
||||
if (seed == 0) {
|
||||
seed = std::random_device()();
|
||||
}
|
||||
T min = static_cast<T>(context.op_.GetAttr<float>("min"));
|
||||
T max = static_cast<T>(context.op_.GetAttr<float>("max"));
|
||||
thrust::counting_iterator<unsigned int> index_sequence_begin(0);
|
||||
ssize_t N = framework::product(tensor->dims());
|
||||
thrust::transform(index_sequence_begin, index_sequence_begin + N,
|
||||
thrust::device_ptr<T>(data),
|
||||
UniformGenerator<T>(min, max, seed));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(uniform_random,
|
||||
paddle::operators::GPUUniformRandomKernel<float>);
|
@ -0,0 +1,35 @@
|
||||
import unittest
|
||||
from paddle.v2.framework.op import Operator
|
||||
import paddle.v2.framework.core as core
|
||||
import numpy
|
||||
|
||||
|
||||
class UniformRandomTest(unittest.TestCase):
|
||||
def test_uniform_random_cpu(self):
|
||||
self.uniform_random_test(place=core.CPUPlace())
|
||||
|
||||
def test_uniform_random_gpu(self):
|
||||
if core.is_compile_gpu():
|
||||
self.uniform_random_test(place=core.GPUPlace(0))
|
||||
|
||||
def uniform_random_test(self, place):
|
||||
scope = core.Scope()
|
||||
scope.new_var("X").get_tensor()
|
||||
|
||||
op = Operator(
|
||||
"uniform_random",
|
||||
Out="X",
|
||||
dims=[1000, 784],
|
||||
min=-5.0,
|
||||
max=10.0,
|
||||
seed=10)
|
||||
|
||||
op.infer_shape(scope)
|
||||
ctx = core.DeviceContext.create(place)
|
||||
op.run(scope, ctx)
|
||||
tensor = numpy.array(scope.find_var("X").get_tensor())
|
||||
self.assertAlmostEqual(tensor.mean(), 2.5, delta=0.1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue