Merge pull request #4032 from tensor-tang/mkldnn-conv

Add MKLDNNConvLayer
update-doc-pybind
Tao Luo 8 years ago committed by GitHub
commit 654344b94c

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -17,6 +17,7 @@ limitations under the License. */
#include <vector>
#include "MKLDNNTester.h"
#include "ModelConfig.pb.h"
#include "paddle/math/MathUtils.h"
using namespace paddle; // NOLINT
@ -63,6 +64,83 @@ TEST(MKLDNNLayer, FcLayer) {
testFcLayer({/*bs*/ 15, /*ic*/ 3, /*oc*/ 6, /*ih*/ 16, /*iw*/ 16});
}
struct testConvDesc {
int bs, gp;
int ic, ih, iw;
int oc, oh, ow;
int fh, fw;
int ph, pw;
int sh, sw;
int dh, dw;
};
void testConvLayer(const testConvDesc& pm) {
const std::string compareTypes[] = {"mkldnn_conv", "exconv"};
TestConfig cfg;
cfg.layerConfig.set_type(compareTypes[0]);
cfg.layerConfig.set_num_filters(pm.oc);
cfg.layerConfig.set_size(pm.oc * pm.oh * pm.ow);
// cfg.layerConfig.set_partial_sum(1); // TODO: check it
cfg.layerConfig.set_shared_biases(true);
cfg.inputDefs.push_back(
{INPUT_DATA,
"layer_0",
/* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw),
/* size of weight= */ size_t(pm.oc * pm.ic * pm.fh * pm.fw / pm.gp)});
LayerInputConfig* input = cfg.layerConfig.add_inputs();
ConvConfig* conv = input->mutable_conv_conf();
conv->set_groups(pm.gp);
conv->set_img_size(pm.iw);
conv->set_img_size_y(pm.ih);
conv->set_output_x(pm.ow);
conv->set_output_y(pm.oh);
conv->set_filter_size(pm.fw);
conv->set_filter_size_y(pm.fh);
conv->set_channels(pm.ic);
conv->set_padding(pm.pw);
conv->set_padding_y(pm.ph);
conv->set_stride(pm.sw);
conv->set_stride_y(pm.sh);
conv->set_dilation(pm.dw);
conv->set_dilation_y(pm.dh);
conv->set_caffe_mode(true);
conv->set_filter_channels(conv->channels() / conv->groups());
CHECK_EQ(conv->filter_channels() * pm.gp, conv->channels())
<< "it is indivisible";
int fh = (pm.fh - 1) * pm.dh + 1;
int fw = (pm.fw - 1) * pm.dw + 1;
int ow = outputSize(pm.iw, fw, pm.pw, pm.sw, true);
int oh = outputSize(pm.ih, fh, pm.ph, pm.sh, true);
CHECK_EQ(ow, pm.ow) << "output size check failed";
CHECK_EQ(oh, pm.oh) << "output size check failed";
MKLDNNTester tester;
for (auto biasSize : {pm.oc, 0}) {
cfg.biasSize = biasSize;
TestConfig ref = cfg;
ref.layerConfig.set_type(compareTypes[1]);
for (auto bs : {pm.bs, 1}) {
tester.run(cfg, ref, bs, pm.ih, pm.iw);
}
}
}
TEST(MKLDNNLayer, ConvLayer) {
/* bs, gp, ic, ih, iw, oc, oh, ow, fh, fw, ph, pw, sh, sw, dh, dw */
testConvLayer({2, 1, 3, 32, 32, 16, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1});
testConvLayer({2, 1, 8, 16, 16, 8, 16, 16, 3, 3, 1, 1, 1, 1, 1, 1});
testConvLayer({3, 1, 16, 32, 32, 3, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1});
testConvLayer({8, 1, 16, 18, 18, 32, 18, 18, 3, 3, 1, 1, 1, 1, 1, 1});
testConvLayer({16, 1, 1, 42, 31, 32, 23, 11, 4, 5, 3, 2, 2, 3, 1, 1});
testConvLayer({2, 1, 8, 16, 16, 8, 8, 8, 3, 3, 1, 1, 2, 2, 1, 1});
testConvLayer({3, 1, 8, 13, 13, 8, 7, 7, 3, 3, 1, 1, 2, 2, 1, 1});
// with groups
testConvLayer({2, 2, 4, 5, 5, 8, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1});
testConvLayer({2, 3, 3, 5, 5, 3, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1});
testConvLayer({4, 4, 16, 3, 3, 16, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1});
}
// TODO(TJ): add branch test
int main(int argc, char** argv) {

@ -49,6 +49,27 @@ MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m,
return create(m, memory::primitive_desc(memory::desc(dims, dtype, fmt), eg));
}
std::shared_ptr<reorder> MKLDNNMatrix::createReorder(const MKLDNNMatrixPtr& src,
const MKLDNNMatrixPtr& dst,
bool checkData) {
if (src == dst || src->getPrimitiveDesc() == dst->getPrimitiveDesc()) {
return nullptr;
}
if (checkData && (src->getData() == dst->getData())) {
LOG(FATAL) << "can not create reorder with inplace data";
return nullptr;
}
memory::dims srcDims = src->getDims();
memory::dims dstDims = dst->getDims();
CHECK_EQ(srcDims.size(), dstDims.size());
for (size_t i = 0; i < srcDims.size(); ++i) {
CHECK_EQ(srcDims[i], dstDims[i]);
}
return std::make_shared<reorder>(*src, *dst);
}
void MKLDNNMatrix::reorderDataFrom(const MKLDNNMatrixPtr& m,
memory::format srcFmt,
memory::dims targetDim) {

@ -52,6 +52,31 @@ public:
mkldnn::engine& eg,
mkldnn::memory::data_type dtype = mkldnn::memory::data_type::f32);
/**
* Create Memory descriptor.
* default with any format and f32 dtype
*/
static mkldnn::memory::desc createMemoryDesc(
const mkldnn::memory::dims& dims,
const mkldnn::memory::format& fmt = mkldnn::memory::format::any,
const mkldnn::memory::data_type& dtype = mkldnn::memory::data_type::f32) {
return mkldnn::memory::desc(dims, dtype, fmt);
}
/**
* Create reorder primitive.
* Create a mkldnn::reorder handle for converting src MKLDNNMatrix to dst.
* checkData: for whether to check the data handle of src and dst is the same.
* if true, means check it and do not want support inplace reorder;
* otherwise do not check data which means the created reorder
* maybe inplace buffer and do not guarantee the logical is correct
* since not all format or conversion support inplace.
*/
static std::shared_ptr<mkldnn::reorder> createReorder(
const MKLDNNMatrixPtr& src,
const MKLDNNMatrixPtr& dst,
bool checkData = true);
public:
/**
* Reorder this MKLDNNMatrix from other format.

@ -2055,20 +2055,26 @@ class ConvLayerBase(LayerBase):
if num_filters is not None:
self.config.num_filters = num_filters
use_mkldnn = int(g_command_config_args.get("use_mkldnn", 0))
use_gpu = int(g_command_config_args.get("use_gpu", 0))
parallel_nn = int(g_command_config_args.get("parallel_nn", 0))
# Automatically select cudnn_type for GPU and exconv for CPU
# Automatically select cudnn_type for GPU, exconv for CPU
# and mkldnn_conv for MKLDNN
# if set type=conv, but still reserve the way user specify
# exconv or cudnn_conv manually.
# exconv, mkldnn_conv or cudnn_conv manually.
if self.layer_type == "cudnn_conv":
config_assert(use_gpu, "cudnn_conv only support GPU")
if self.layer_type == "mkldnn_conv":
config_assert(use_mkldnn, "mkldnn_conv only support MKLDNN")
if (use_gpu == 1 and self.layer_type != "exconv" and
self.layer_type != "mkldnn_conv" and
(parallel_nn == 0 or self.config.device > -1)):
self.layer_type = "cudnn_conv"
else:
self.layer_type = "exconv"
self.layer_type = "mkldnn_conv" if use_mkldnn else "exconv"
# need to specify layer in config
self.config.type = self.layer_type
@ -2100,6 +2106,11 @@ class ConvLayer(ConvLayerBase):
layer_type = 'exconv'
@config_layer('mkldnn_conv')
class ConvLayer(ConvLayerBase):
layer_type = 'mkldnn_conv'
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
layer_type = 'cudnn_conv'

Loading…
Cancel
Save