test=develop, reconstruct layer helper to fit imperative usage (#15938)
* test=develop, reconstruct layer helper to fit imperative usage * test=develop, fix import error on py35 * test=develop, fix rnn gradient error * test=develop, delete test use code * test=develop, remove helper from imperative usage * test=develop, fix test_base_layer using new helper * test=develop, reconstruct layerhelper for imperative mode * test=develop, reconstruct layerhelper for imperative mode * test=develop, fix bug * test=develop, fix test failed bug * test=develop, fix test failed bug * test=develop, fix test failed bug * test=develop, fix bug * test=develop, polish codealign_pyramid
parent
14b4337663
commit
654825cfe3
@ -0,0 +1,220 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import copy
|
||||
import six
|
||||
from ..framework import Parameter, _in_imperative_mode
|
||||
from ..param_attr import ParamAttr
|
||||
from .. import core
|
||||
from six.moves import zip
|
||||
from ..layer_helper_base import LayerHelperBase
|
||||
|
||||
|
||||
class LayerObjectHelper(LayerHelperBase):
|
||||
def __init__(self, name):
|
||||
super(LayerObjectHelper, self).__init__(name, layer_type=name)
|
||||
|
||||
def append_op(self,
|
||||
type=None,
|
||||
inputs=None,
|
||||
outputs=None,
|
||||
attrs=None,
|
||||
stop_gradient=None):
|
||||
"""append an operator for this layer object.
|
||||
|
||||
Args:
|
||||
type: operator type
|
||||
inputs: input variable of the operator
|
||||
dtype: data type of this parameter
|
||||
is_bias: if this is a bias parameter
|
||||
default_initializer: set the default initializer for this parameter
|
||||
|
||||
Returns created parameter Variable.
|
||||
"""
|
||||
return self.main_program.current_block().append_op(
|
||||
type=type,
|
||||
inputs=inputs,
|
||||
outputs=outputs,
|
||||
attrs=attrs,
|
||||
stop_gradient=stop_gradient)
|
||||
|
||||
def _multiple_input(self, inputs_in):
|
||||
inputs = inputs_in
|
||||
ret = []
|
||||
if isinstance(inputs, (list, tuple)):
|
||||
for inp in inputs:
|
||||
ret.append(self.to_variable(inp))
|
||||
else:
|
||||
ret.append(self.to_variable(inputs))
|
||||
return ret
|
||||
|
||||
# TODO: make it public when we need it
|
||||
def _input(self, inputs_in):
|
||||
inputs = self._multiple_input(inputs_in)
|
||||
if len(inputs) != 1:
|
||||
raise "{0} layer only takes one input".format(self.layer_type)
|
||||
return inputs[0]
|
||||
|
||||
def _multiple_param_attr(self, length, param_attr_in=None):
|
||||
param_attr = param_attr_in
|
||||
if isinstance(param_attr, ParamAttr):
|
||||
param_attr = [param_attr]
|
||||
|
||||
if len(param_attr) != 1 and len(param_attr) != length:
|
||||
raise ValueError("parameter number mismatch")
|
||||
elif len(param_attr) == 1 and length != 1:
|
||||
tmp = [None] * length
|
||||
for i in six.moves.range(length):
|
||||
tmp[i] = copy.deepcopy(param_attr[0])
|
||||
param_attr = tmp
|
||||
return param_attr
|
||||
|
||||
def iter_inputs_and_params(self, inputs_in, param_attr_in=None):
|
||||
"""Access all inputs and params one by one
|
||||
|
||||
Args:
|
||||
inputs_in: inputs to be iter
|
||||
param_attr_in: param_attr to be iter
|
||||
|
||||
Returns input, param_attr
|
||||
"""
|
||||
inputs = inputs_in if (inputs_in is not None) else []
|
||||
inputs = self._multiple_input(inputs)
|
||||
param_attrs = self._multiple_param_attr(len(inputs), param_attr_in)
|
||||
for ipt, param_attr in zip(inputs, param_attrs):
|
||||
yield ipt, param_attr
|
||||
|
||||
def input_dtype(self, inputs_in):
|
||||
"""Get input data type
|
||||
|
||||
Args:
|
||||
inputs_in: inputs wanted know the data type
|
||||
|
||||
Returns dtype of the input
|
||||
"""
|
||||
inputs = self._multiple_input(inputs_in)
|
||||
dtype = None
|
||||
for each in inputs:
|
||||
if dtype is None:
|
||||
dtype = each.dtype
|
||||
elif dtype != each.dtype:
|
||||
raise ValueError("Data Type mismatch: %d to %d" %
|
||||
(dtype, each.dtype))
|
||||
return dtype
|
||||
|
||||
def get_parameter(self, name):
|
||||
"""Get parameter specifically
|
||||
|
||||
Args:
|
||||
name: parameter's name
|
||||
|
||||
Returns target parameter
|
||||
"""
|
||||
param = self.main_program.global_block().var(name)
|
||||
if not isinstance(param, Parameter):
|
||||
raise ValueError("no Parameter name %s found" % name)
|
||||
return param
|
||||
|
||||
def append_bias_op(self,
|
||||
input_var,
|
||||
dim_start=1,
|
||||
dim_end=None,
|
||||
bias_attr=None):
|
||||
"""Append bias operator and return its output. If the user does not set bias_attr, append_bias_op will return input_var
|
||||
|
||||
Args:
|
||||
input_var: the input variable. The len(input_var.shape) is
|
||||
larger or equal than 2.
|
||||
dim_start:
|
||||
dim_end: the shape of the bias will be
|
||||
bias_attr: the bias_attr of it
|
||||
|
||||
Return the Variable of after append bias op
|
||||
"""
|
||||
size = list(input_var.shape[dim_start:dim_end])
|
||||
bias_attr = bias_attr
|
||||
if not bias_attr:
|
||||
return input_var
|
||||
|
||||
b = self.create_parameter(
|
||||
attr=bias_attr, shape=size, dtype=input_var.dtype, is_bias=True)
|
||||
tmp = self.create_variable_for_type_inference(dtype=input_var.dtype)
|
||||
self.append_op(
|
||||
type='elementwise_add',
|
||||
inputs={'X': [input_var],
|
||||
'Y': [b]},
|
||||
outputs={'Out': [tmp]},
|
||||
attrs={'axis': dim_start})
|
||||
return tmp
|
||||
|
||||
# TODO: this should not be called anymore after all activation func move to Layers
|
||||
def append_activation(self,
|
||||
input_var,
|
||||
act=None,
|
||||
use_cudnn=None,
|
||||
use_mkl_dnn=None):
|
||||
"""Append activation
|
||||
|
||||
Args:
|
||||
input_var: the input variable. The len(input_var.shape) is
|
||||
larger or equal than 2.
|
||||
act: activation type
|
||||
use_mkl_dnn: if use mkldnn
|
||||
use_cudnn: if use cudnn
|
||||
|
||||
Return the Variable of after append activation
|
||||
"""
|
||||
act = act
|
||||
if act is None:
|
||||
return input_var
|
||||
if isinstance(act, six.string_types):
|
||||
act = {'type': act}
|
||||
else:
|
||||
raise TypeError(str(act) + " should be unicode or str")
|
||||
|
||||
if (use_cudnn is not None) and use_cudnn:
|
||||
act['use_cudnn'] = use_cudnn
|
||||
if (use_mkl_dnn is not None) and use_mkl_dnn:
|
||||
act['use_mkldnn'] = use_mkl_dnn
|
||||
act_type = act.pop('type')
|
||||
|
||||
tmp = input_var
|
||||
# NOTE(dzhwinter): some activation support inplace compution.
|
||||
# NOTE(minqiyang): currently, we don't support inplace in imperative mode
|
||||
if not _in_imperative_mode() and core.IsInplace(act_type):
|
||||
tmp = input_var
|
||||
else:
|
||||
tmp = self.create_variable_for_type_inference(dtype=input_var.dtype)
|
||||
self.append_op(
|
||||
type=act_type,
|
||||
inputs={"X": [input_var]},
|
||||
outputs={"Out": [tmp]},
|
||||
attrs=act)
|
||||
return tmp
|
||||
|
||||
def is_instance(self, param, cls):
|
||||
"""Check if the input parameter is instance of input class
|
||||
|
||||
Args:
|
||||
param: parameter to be check
|
||||
cls: class of the parameter
|
||||
|
||||
Return result of the check (True or False)
|
||||
"""
|
||||
param = param
|
||||
if not isinstance(param, cls):
|
||||
raise TypeError("The input {0} parameter of method {1} must be {2}",
|
||||
param, self.layer_type, cls.__name__)
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue