Add proximal adagrad optimizer (#5128)
parent
8e3ecf5d11
commit
66476fc7b7
@ -0,0 +1,113 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/proximal_adagrad_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class ProximalAdagradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext *ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Param"),
|
||||
"Input(Param) of ProximalAdagradOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Moment"),
|
||||
"Input(Moment) of ProximalAdagradOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Grad"),
|
||||
"Input(Grad) of ProximalAdagradOp should not be null.");
|
||||
PADDLE_ENFORCE(
|
||||
ctx->HasInput("LearningRate"),
|
||||
"Input(LearningRate) of ProximalAdagradOp should not be null.");
|
||||
|
||||
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
|
||||
"Output(ParamOut) of ProximalAdagradOp should not be null.");
|
||||
PADDLE_ENFORCE(
|
||||
ctx->HasOutput("MomentOut"),
|
||||
"Output(MomentOut) of ProximalAdagradOp should not be null.");
|
||||
|
||||
auto param_dim = ctx->GetInputDim("Param");
|
||||
PADDLE_ENFORCE_EQ(
|
||||
param_dim, ctx->GetInputDim("Grad"),
|
||||
"Param and Grad of ProximalAdagrad Op must have same dimension.");
|
||||
|
||||
PADDLE_ENFORCE_EQ(
|
||||
param_dim, ctx->GetInputDim("Moment"),
|
||||
"Param and Moment of ProximalAdagrad Op must have same dimension.");
|
||||
|
||||
auto lr_dim = ctx->GetInputDim("LearningRate");
|
||||
PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1,
|
||||
"Learning Rate should be a scalar.");
|
||||
|
||||
ctx->SetOutputDim("ParamOut", param_dim);
|
||||
ctx->SetOutputDim("MomentOut", param_dim);
|
||||
}
|
||||
};
|
||||
|
||||
class ProximalAdagradOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
ProximalAdagradOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("Param",
|
||||
"(Tensor, default Tensor<float>) "
|
||||
"Input parameter that has to be updated.");
|
||||
AddInput("Moment",
|
||||
"(Tensor, default Tensor<float>) "
|
||||
"Moment parameter that has to be updated.");
|
||||
AddInput("Grad",
|
||||
"(Tensor, default Tensor<float>) "
|
||||
"Input gradient of the parameter.");
|
||||
AddInput("LearningRate",
|
||||
"(Tensor, default Tensor<float>) "
|
||||
"The learning rate should be a tensor of size 1.");
|
||||
|
||||
AddOutput("ParamOut", "(Tensor) Output updated parameter value.");
|
||||
AddOutput("MomentOut", "(Tensor) Output updated moment value.");
|
||||
|
||||
AddAttr<float>("l1",
|
||||
"(float, default 0.0) "
|
||||
"L1 regularization strength.")
|
||||
.SetDefault(0.0f);
|
||||
AddAttr<float>("l2",
|
||||
"(float, default 0.0)"
|
||||
"L2 regularization strength.")
|
||||
.SetDefault(0.0f);
|
||||
AddComment(R"DOC(
|
||||
|
||||
Optimizer that implements the proximal adagrad algorithm.
|
||||
|
||||
moment = moment + grad * grad
|
||||
prox_param = param - learning_rate * grad * (1 / sqrt(moment))
|
||||
param = sign(prox_param) / (1 + learning_rate * l2) *
|
||||
max { |prox_param| - learning_rate * l1 , 0 }
|
||||
|
||||
The paper that proposed Proximal GD:
|
||||
(http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf)
|
||||
Here, we use the adagrad learning rate as specified here:
|
||||
(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_WITHOUT_GRADIENT(proximal_adagrad, ops::ProximalAdagradOp,
|
||||
ops::ProximalAdagradOpMaker);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
proximal_adagrad,
|
||||
ops::ProximalAdagradOpKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,20 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
You may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed
|
||||
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||||
CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/operators/proximal_adagrad_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
proximal_adagrad,
|
||||
ops::ProximalAdagradOpKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,68 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
template <typename T, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||
|
||||
template <typename Place, typename T>
|
||||
class ProximalAdagradOpKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* param_out = ctx.Output<Tensor>("ParamOut");
|
||||
auto* moment_out = ctx.Output<Tensor>("MomentOut");
|
||||
|
||||
param_out->mutable_data<T>(ctx.GetPlace());
|
||||
moment_out->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto l1 = static_cast<T>(ctx.Attr<float>("l1"));
|
||||
auto l2 = static_cast<T>(ctx.Attr<float>("l2"));
|
||||
|
||||
auto grad = ctx.Input<Tensor>("Grad");
|
||||
auto p = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Param"));
|
||||
auto m = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Moment"));
|
||||
auto g = EigenVector<T>::Flatten(*grad);
|
||||
auto lr = EigenVector<T>::Flatten(*ctx.Input<Tensor>("LearningRate"));
|
||||
|
||||
auto p_out = EigenVector<T>::Flatten(*param_out);
|
||||
auto m_out = EigenVector<T>::Flatten(*moment_out);
|
||||
auto place = ctx.GetEigenDevice<Place>();
|
||||
|
||||
Eigen::DSizes<int, 1> grad_dsize(grad->numel());
|
||||
|
||||
m_out.device(place) = m + g * g;
|
||||
auto prox_param = p - lr.broadcast(grad_dsize) * g / m_out.sqrt();
|
||||
if (l1 > static_cast<T>(0)) {
|
||||
p_out.device(place) =
|
||||
prox_param.sign() *
|
||||
(((prox_param.abs() - (lr * l1).broadcast(grad_dsize))
|
||||
.cwiseMax(static_cast<T>(0.0))) /
|
||||
(static_cast<T>(1.0) + (lr * l2).broadcast(grad_dsize)));
|
||||
} else {
|
||||
p_out.device(place) =
|
||||
prox_param / (static_cast<T>(1.0) + (lr * l2).broadcast(grad_dsize));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,36 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestProximalAdagradOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "proximal_adagrad"
|
||||
w = np.random.random((102, 105)).astype("float32")
|
||||
m = np.random.random((102, 105)).astype("float32")
|
||||
g = np.random.random((102, 105)).astype("float32")
|
||||
lr = np.array([0.1]).astype("float32")
|
||||
l1 = 0.1
|
||||
l2 = 0.2
|
||||
|
||||
self.inputs = {'Param': w, 'Grad': g, 'Moment': m, 'LearningRate': lr}
|
||||
self.attrs = {'l1': l1, 'l2': l2}
|
||||
param_out = 0.0
|
||||
|
||||
moment_out = m + g * g
|
||||
prox_param = w - lr * g / np.sqrt(moment_out)
|
||||
if l1 > 0.0:
|
||||
x = np.abs(prox_param) - lr * l1
|
||||
x[x < 0] = 0
|
||||
param_out = np.sign(prox_param) * (x / (1.0 + lr * l2))
|
||||
else:
|
||||
param_out = prox_param / (1.0 + lr * l2)
|
||||
|
||||
self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue