|
|
|
@ -18,17 +18,18 @@ import unittest
|
|
|
|
|
from op_test import OpTest
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
import paddle.fluid.core as core
|
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def execute(main_program, startup_program):
|
|
|
|
|
if core.is_compiled_with_cuda():
|
|
|
|
|
place = core.CUDAPlace(0)
|
|
|
|
|
if paddle.is_compiled_with_cuda():
|
|
|
|
|
place = paddle.CUDAPlace(0)
|
|
|
|
|
else:
|
|
|
|
|
place = core.CPUPlace()
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
place = paddle.CPUPlace()
|
|
|
|
|
exe = paddle.static.Executor(place)
|
|
|
|
|
exe.run(startup_program)
|
|
|
|
|
exe.run(main_program)
|
|
|
|
|
|
|
|
|
@ -43,18 +44,17 @@ def get_vaild_warning_num(warning, w):
|
|
|
|
|
|
|
|
|
|
class TestDeviceGuard(unittest.TestCase):
|
|
|
|
|
def test_device_guard(self):
|
|
|
|
|
main_program = fluid.Program()
|
|
|
|
|
startup_program = fluid.Program()
|
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
|
|
|
data1 = fluid.layers.fill_constant(
|
|
|
|
|
shape=[1, 3, 8, 8], value=0.5, dtype='float32')
|
|
|
|
|
data2 = fluid.layers.fill_constant(
|
|
|
|
|
shape=[1, 3, 5, 5], value=0.5, dtype='float32')
|
|
|
|
|
shape = fluid.layers.shape(data2)
|
|
|
|
|
with fluid.device_guard("cpu"):
|
|
|
|
|
shape = fluid.layers.slice(
|
|
|
|
|
shape, axes=[0], starts=[0], ends=[4])
|
|
|
|
|
with fluid.device_guard("gpu"):
|
|
|
|
|
main_program = paddle.static.Program()
|
|
|
|
|
startup_program = paddle.static.Program()
|
|
|
|
|
with paddle.static.program_guard(main_program, startup_program):
|
|
|
|
|
data1 = paddle.full(
|
|
|
|
|
shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
|
|
|
|
|
data2 = paddle.full(
|
|
|
|
|
shape=[1, 3, 5, 5], fill_value=0.5, dtype='float32')
|
|
|
|
|
shape = paddle.shape(data2)
|
|
|
|
|
with paddle.static.device_guard("cpu"):
|
|
|
|
|
shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
|
|
|
|
|
with paddle.static.device_guard("gpu"):
|
|
|
|
|
out = fluid.layers.crop_tensor(data1, shape=shape)
|
|
|
|
|
# check if the device attr is set correctly
|
|
|
|
|
all_ops = main_program.global_block().ops
|
|
|
|
@ -68,18 +68,17 @@ class TestDeviceGuard(unittest.TestCase):
|
|
|
|
|
execute(main_program, startup_program)
|
|
|
|
|
|
|
|
|
|
def test_device_guard_with_id(self):
|
|
|
|
|
main_program = fluid.Program()
|
|
|
|
|
startup_program = fluid.Program()
|
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
|
|
|
data1 = fluid.layers.fill_constant(
|
|
|
|
|
shape=[1, 3, 8, 8], value=0.5, dtype='float32')
|
|
|
|
|
data2 = fluid.layers.fill_constant(
|
|
|
|
|
shape=[1, 3, 5, 5], value=0.5, dtype='float32')
|
|
|
|
|
shape = fluid.layers.shape(data2)
|
|
|
|
|
with fluid.device_guard("cpu"):
|
|
|
|
|
shape = fluid.layers.slice(
|
|
|
|
|
shape, axes=[0], starts=[0], ends=[4])
|
|
|
|
|
with fluid.device_guard("gpu:1"):
|
|
|
|
|
main_program = paddle.static.Program()
|
|
|
|
|
startup_program = paddle.static.Program()
|
|
|
|
|
with paddle.static.program_guard(main_program, startup_program):
|
|
|
|
|
data1 = paddle.full(
|
|
|
|
|
shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
|
|
|
|
|
data2 = paddle.full(
|
|
|
|
|
shape=[1, 3, 5, 5], fill_value=0.5, dtype='float32')
|
|
|
|
|
shape = paddle.shape(data2)
|
|
|
|
|
with paddle.static.device_guard("cpu"):
|
|
|
|
|
shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
|
|
|
|
|
with paddle.static.device_guard("gpu:1"):
|
|
|
|
|
out = fluid.layers.crop_tensor(data1, shape=shape)
|
|
|
|
|
# check if the device attr is set correctly
|
|
|
|
|
all_ops = main_program.global_block().ops
|
|
|
|
@ -93,23 +92,22 @@ class TestDeviceGuard(unittest.TestCase):
|
|
|
|
|
execute(main_program, startup_program)
|
|
|
|
|
|
|
|
|
|
def test_cpu_only_op(self):
|
|
|
|
|
main_program = fluid.Program()
|
|
|
|
|
startup_program = fluid.Program()
|
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
|
|
|
x = fluid.layers.fill_constant(
|
|
|
|
|
shape=[2, 255, 13, 13], value=0.3, dtype='float32')
|
|
|
|
|
gt_box = fluid.layers.fill_constant(
|
|
|
|
|
shape=[2, 6, 4], value=0.5, dtype='float32')
|
|
|
|
|
gt_label = fluid.layers.fill_constant(
|
|
|
|
|
shape=[2, 6], value=1.0, dtype='int32')
|
|
|
|
|
gt_score = fluid.layers.fill_constant(
|
|
|
|
|
shape=[2, 6], value=0.5, dtype='float32')
|
|
|
|
|
main_program = paddle.static.Program()
|
|
|
|
|
startup_program = paddle.static.Program()
|
|
|
|
|
with paddle.static.program_guard(main_program, startup_program):
|
|
|
|
|
x = paddle.full(
|
|
|
|
|
shape=[2, 255, 13, 13], fill_value=0.3, dtype='float32')
|
|
|
|
|
gt_box = paddle.full(
|
|
|
|
|
shape=[2, 6, 4], fill_value=0.5, dtype='float32')
|
|
|
|
|
gt_label = paddle.full(shape=[2, 6], fill_value=1.0, dtype='int32')
|
|
|
|
|
gt_score = paddle.full(
|
|
|
|
|
shape=[2, 6], fill_value=0.5, dtype='float32')
|
|
|
|
|
anchors = [
|
|
|
|
|
10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156,
|
|
|
|
|
198, 373, 326
|
|
|
|
|
]
|
|
|
|
|
anchor_mask = [0, 1, 2]
|
|
|
|
|
with fluid.device_guard("gpu"):
|
|
|
|
|
with paddle.static.device_guard("gpu"):
|
|
|
|
|
# yolov3_loss only has cpu kernel, so its cpu kernel will be executed
|
|
|
|
|
loss = fluid.layers.yolov3_loss(
|
|
|
|
|
x=x,
|
|
|
|
@ -125,20 +123,19 @@ class TestDeviceGuard(unittest.TestCase):
|
|
|
|
|
execute(main_program, startup_program)
|
|
|
|
|
|
|
|
|
|
def test_without_kernel_op(self):
|
|
|
|
|
main_program = fluid.Program()
|
|
|
|
|
startup_program = fluid.Program()
|
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
|
|
|
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
|
|
|
|
|
loop_len = fluid.layers.fill_constant(
|
|
|
|
|
shape=[1], dtype='int64', value=10)
|
|
|
|
|
cond = fluid.layers.less_than(x=i, y=loop_len)
|
|
|
|
|
main_program = paddle.static.Program()
|
|
|
|
|
startup_program = paddle.static.Program()
|
|
|
|
|
with paddle.static.program_guard(main_program, startup_program):
|
|
|
|
|
i = paddle.full(shape=[1], dtype='int64', fill_value=0)
|
|
|
|
|
loop_len = paddle.full(shape=[1], dtype='int64', fill_value=10)
|
|
|
|
|
cond = paddle.less_than(x=i, y=loop_len)
|
|
|
|
|
|
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
|
|
|
warnings.simplefilter("always")
|
|
|
|
|
with fluid.device_guard("cpu"):
|
|
|
|
|
with paddle.static.device_guard("cpu"):
|
|
|
|
|
while_op = fluid.layers.While(cond=cond)
|
|
|
|
|
with while_op.block():
|
|
|
|
|
i = fluid.layers.increment(x=i, value=1, in_place=True)
|
|
|
|
|
i = paddle.increment(x=i, value=1)
|
|
|
|
|
fluid.layers.less_than(x=i, y=loop_len, cond=cond)
|
|
|
|
|
|
|
|
|
|
warning = "The Op(while) is not support to set device."
|
|
|
|
@ -155,55 +152,32 @@ class TestDeviceGuard(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
def test_error(self):
|
|
|
|
|
def device_attr():
|
|
|
|
|
with fluid.device_guard("cpu1"):
|
|
|
|
|
out = fluid.layers.fill_constant(
|
|
|
|
|
shape=[1], value=0.2, dtype='float32')
|
|
|
|
|
with paddle.static.device_guard("cpu1"):
|
|
|
|
|
out = paddle.full(shape=[1], fill_value=0.2, dtype='float32')
|
|
|
|
|
|
|
|
|
|
def device_attr2():
|
|
|
|
|
with fluid.device_guard("cpu:1"):
|
|
|
|
|
out = fluid.layers.fill_constant(
|
|
|
|
|
shape=[1], value=0.2, dtype='float32')
|
|
|
|
|
with paddle.static.device_guard("cpu:1"):
|
|
|
|
|
out = paddle.full(shape=[1], fill_value=0.2, dtype='float32')
|
|
|
|
|
|
|
|
|
|
self.assertRaises(ValueError, device_attr)
|
|
|
|
|
self.assertRaises(ValueError, device_attr2)
|
|
|
|
|
|
|
|
|
|
def test_warning(self):
|
|
|
|
|
main_program = fluid.Program()
|
|
|
|
|
startup_program = fluid.Program()
|
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
|
|
|
warnings.simplefilter("always")
|
|
|
|
|
with fluid.device_guard("gpu"):
|
|
|
|
|
x = fluid.layers.fill_constant(
|
|
|
|
|
shape=[1], value=3.0, dtype='float32', force_cpu=True)
|
|
|
|
|
y = fluid.layers.fill_constant(
|
|
|
|
|
shape=[1], value=4.0, dtype='float32')
|
|
|
|
|
result = fluid.layers.less_than(x=x, y=y, force_cpu=False)
|
|
|
|
|
|
|
|
|
|
warning = "\'device_guard\' has higher priority when they are used at the same time."
|
|
|
|
|
warning_num = get_vaild_warning_num(warning, w)
|
|
|
|
|
assert warning_num == 2
|
|
|
|
|
|
|
|
|
|
all_ops = main_program.global_block().ops
|
|
|
|
|
device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
|
|
|
|
|
for op in all_ops:
|
|
|
|
|
self.assertEqual(op.desc.attr(device_attr_name), "gpu")
|
|
|
|
|
|
|
|
|
|
# check if op_descs have op_device attr
|
|
|
|
|
def test_op_descs_device_attr(self):
|
|
|
|
|
main_program = fluid.Program()
|
|
|
|
|
startup_program = fluid.Program()
|
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
|
|
|
data1 = fluid.layers.data(name="data_1", shape=[2], dtype="float32")
|
|
|
|
|
data2 = fluid.layers.data(name="data_2", shape=[2], dtype="float32")
|
|
|
|
|
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
|
|
|
|
fc1 = fluid.layers.fc(input=data1, size=10)
|
|
|
|
|
fc2 = fluid.layers.fc(input=fc1, size=10)
|
|
|
|
|
with fluid.device_guard("gpu"):
|
|
|
|
|
out = fluid.layers.softmax_with_cross_entropy(
|
|
|
|
|
main_program = paddle.static.Program()
|
|
|
|
|
startup_program = paddle.static.Program()
|
|
|
|
|
with paddle.static.program_guard(main_program, startup_program):
|
|
|
|
|
data1 = paddle.static.data(
|
|
|
|
|
name="data_1", shape=[4, 2], dtype="float32")
|
|
|
|
|
label = paddle.static.data(
|
|
|
|
|
name="label", shape=[4, 1], dtype="int64")
|
|
|
|
|
fc1 = paddle.static.nn.fc(x=data1, size=10)
|
|
|
|
|
fc2 = paddle.static.nn.fc(x=fc1, size=10)
|
|
|
|
|
with paddle.static.device_guard("gpu"):
|
|
|
|
|
out = paddle.nn.functional.softmax_with_cross_entropy(
|
|
|
|
|
logits=fc1 + fc2, label=label)
|
|
|
|
|
loss = fluid.layers.mean(out)
|
|
|
|
|
opt = fluid.optimizer.SGDOptimizer(0.1)
|
|
|
|
|
loss = paddle.mean(out)
|
|
|
|
|
opt = paddle.optimizer.SGD(0.1)
|
|
|
|
|
opt.minimize(loss)
|
|
|
|
|
|
|
|
|
|
all_ops = main_program.global_block().ops
|
|
|
|
|