|
|
|
@ -29,61 +29,68 @@ class GemmConvKernel : public framework::OpKernel {
|
|
|
|
|
public:
|
|
|
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
|
|
|
const Tensor* input = context.Input<Tensor>("Input");
|
|
|
|
|
Tensor* filter = const_cast<Tensor*>(context.Input<Tensor>("Filter"));
|
|
|
|
|
// The filter will be reshaped in the calculations,
|
|
|
|
|
// so here use an assignment operation,
|
|
|
|
|
// that avoids modifying the variable in the Scope.
|
|
|
|
|
Tensor filter = *context.Input<Tensor>("Filter");
|
|
|
|
|
Tensor* output = context.Output<Tensor>("Output");
|
|
|
|
|
output->mutable_data<T>(context.GetPlace());
|
|
|
|
|
|
|
|
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
|
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
|
|
|
auto filter_dims = filter->dims();
|
|
|
|
|
|
|
|
|
|
int batch_size = input->dims()[0];
|
|
|
|
|
int input_channels = input->dims()[1];
|
|
|
|
|
int filter_height = filter->dims()[filter->dims().size() - 2];
|
|
|
|
|
int filter_width = filter->dims()[filter->dims().size() - 1];
|
|
|
|
|
int filter_height = filter.dims()[filter.dims().size() - 2];
|
|
|
|
|
int filter_width = filter.dims()[filter.dims().size() - 1];
|
|
|
|
|
int output_channels = output->dims()[1];
|
|
|
|
|
int output_height = output->dims()[2];
|
|
|
|
|
int output_width = output->dims()[3];
|
|
|
|
|
|
|
|
|
|
paddle::operators::math::Im2ColFunctor<
|
|
|
|
|
paddle::operators::math::ColFormat::kCFO, Place, T>
|
|
|
|
|
im2col;
|
|
|
|
|
// use col_shape in the im2col calculation
|
|
|
|
|
framework::DDim col_shape = {input_channels, filter_height, filter_width,
|
|
|
|
|
output_height, output_width};
|
|
|
|
|
// use col_matrix_shape in the gemm calculation
|
|
|
|
|
framework::DDim col_matrix_shape = {
|
|
|
|
|
input_channels * filter_height * filter_width,
|
|
|
|
|
output_height * output_width};
|
|
|
|
|
Tensor col;
|
|
|
|
|
col.mutable_data<float>(col_shape, context.GetPlace());
|
|
|
|
|
|
|
|
|
|
auto* device_context =
|
|
|
|
|
const_cast<platform::DeviceContext*>(context.device_context_);
|
|
|
|
|
// col_matrix shares the same piece of data with col,
|
|
|
|
|
// but will be reshaped into a two-dimensional matrix shape
|
|
|
|
|
// to call the matrix multiplication interface.
|
|
|
|
|
Tensor col_matrix = col;
|
|
|
|
|
col_matrix.Resize(col_matrix_shape);
|
|
|
|
|
|
|
|
|
|
framework::DDim input_shape = {input->dims()[1], input->dims()[2],
|
|
|
|
|
input->dims()[3]};
|
|
|
|
|
framework::DDim filter_matrix_shape = {
|
|
|
|
|
filter->dims()[0],
|
|
|
|
|
filter->dims()[1] * filter->dims()[2] * filter->dims()[3]};
|
|
|
|
|
framework::DDim col_matrix_shape = {
|
|
|
|
|
input_channels * filter_height * filter_width,
|
|
|
|
|
output_height * output_width};
|
|
|
|
|
framework::DDim output_matrix_shape = {
|
|
|
|
|
output->dims()[1], output->dims()[2] * output->dims()[3]};
|
|
|
|
|
filter->Resize(filter_matrix_shape);
|
|
|
|
|
output_channels, framework::product(filter.dims()) / output_channels};
|
|
|
|
|
filter.Resize(filter_matrix_shape);
|
|
|
|
|
|
|
|
|
|
framework::DDim output_matrix_shape = {output_channels,
|
|
|
|
|
output_height * output_width};
|
|
|
|
|
|
|
|
|
|
auto* device_context =
|
|
|
|
|
const_cast<platform::DeviceContext*>(context.device_context_);
|
|
|
|
|
|
|
|
|
|
// convolution operator: im2col + gemm
|
|
|
|
|
for (int i = 0; i < batch_size; i++) {
|
|
|
|
|
// im2col
|
|
|
|
|
Tensor in_slice = input->Slice<T>(i, i + 1);
|
|
|
|
|
in_slice.Resize(input_shape);
|
|
|
|
|
col.Resize(col_shape);
|
|
|
|
|
im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
|
|
|
|
|
device_context);
|
|
|
|
|
|
|
|
|
|
// gemm
|
|
|
|
|
Tensor out_slice = output->Slice<T>(i, i + 1);
|
|
|
|
|
out_slice.Resize(output_matrix_shape);
|
|
|
|
|
col.Resize(col_matrix_shape);
|
|
|
|
|
math::matmul<Place, T>(*filter, false, col, false, T(1.0), &out_slice,
|
|
|
|
|
T(0.0), device_context);
|
|
|
|
|
math::matmul<Place, T>(filter, false, col_matrix, false, T(1.0),
|
|
|
|
|
&out_slice, T(0.0), device_context);
|
|
|
|
|
}
|
|
|
|
|
filter->Resize(filter_dims);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|