|
|
|
@ -40,8 +40,6 @@ class PoolOp : public framework::OperatorWithKernel {
|
|
|
|
|
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
|
|
|
|
|
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
|
|
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
|
|
|
|
|
"pooling_type should be 'max' or 'avg'");
|
|
|
|
|
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
|
|
|
|
|
"Pooling intput should be 4-D or 5-D");
|
|
|
|
|
|
|
|
|
@ -52,13 +50,11 @@ class PoolOp : public framework::OperatorWithKernel {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
|
|
|
|
|
"Input size and Pooling size should be consistent.");
|
|
|
|
|
PADDLE_ENFORCE(ksize.size() == 2 || ksize.size() == 3,
|
|
|
|
|
"Pooling size should be 2 elements. or 3 elements.");
|
|
|
|
|
"Input size and pooling size should be consistent.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
|
|
|
|
|
"strides size and pooling size should be the same.");
|
|
|
|
|
"Strides size and pooling size should be the same.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
|
|
|
|
|
"paddings size and pooling size should be the same.");
|
|
|
|
|
"Paddings size and pooling size should be the same.");
|
|
|
|
|
|
|
|
|
|
std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
|
|
|
|
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
|
|
|
@ -75,10 +71,9 @@ class PoolOpGrad : public framework::OperatorWithKernel {
|
|
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
|
|
|
"X(Input) of Pooling should not be null.");
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
|
|
|
|
"Input@Grad of Pooling should not be null.");
|
|
|
|
|
"Input(X@GRAD) should not be null.");
|
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
@ -94,17 +89,22 @@ class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
|
"number of channels, H and W is the height and width of feature.");
|
|
|
|
|
AddOutput("Out",
|
|
|
|
|
"The output tensor of pooling operator."
|
|
|
|
|
"The format of output tensor is also NCHW.");
|
|
|
|
|
"The format of output tensor is also NCHW."
|
|
|
|
|
"Where N is batch size, C is "
|
|
|
|
|
"the number of channels, H and W is the height and "
|
|
|
|
|
"width of feature.");
|
|
|
|
|
|
|
|
|
|
AddAttr<std::string>("poolingType",
|
|
|
|
|
"PoolingType of pooling operator."
|
|
|
|
|
"Str constant equal to 'max' or 'avg'.")
|
|
|
|
|
.InEnum({"max", "avg"});
|
|
|
|
|
|
|
|
|
|
AddAttr<std::vector<int>>(
|
|
|
|
|
"ksize",
|
|
|
|
|
"Pooling size(depth, height, width) of pooling operator."
|
|
|
|
|
"The pooling size(height, width) of pooling operator."
|
|
|
|
|
"If globalPooling = true, ksize is ignored and need not be "
|
|
|
|
|
"specified."); // TODO(Add checker)
|
|
|
|
|
"specified."); // TODO(Chengduo): Add checker. (Currently,
|
|
|
|
|
// TypedAttrChecker don't support vector type.)
|
|
|
|
|
AddAttr<bool>(
|
|
|
|
|
"globalPooling",
|
|
|
|
|
"Whether to use the globalPooling."
|
|
|
|
@ -114,15 +114,22 @@ class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
|
.SetDefault(false);
|
|
|
|
|
AddAttr<std::vector<int>>("strides",
|
|
|
|
|
"Strides(height, width) of pooling operator."
|
|
|
|
|
"Default {1,1}")
|
|
|
|
|
.SetDefault({1, 1}); // TODO(Add checker)
|
|
|
|
|
"Default {1,1}.")
|
|
|
|
|
.SetDefault({1, 1}); // TODO(Chengduo): Add checker. (Currently,
|
|
|
|
|
// TypedAttrChecker don't support vector type.)
|
|
|
|
|
AddAttr<std::vector<int>>("paddings",
|
|
|
|
|
"Paddings(height, width) of pooling operator."
|
|
|
|
|
"Default {0,0}.")
|
|
|
|
|
.SetDefault({0, 0}); // TODO(Add checker)
|
|
|
|
|
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
|
|
|
|
|
// TypedAttrChecker don't support vector type.)
|
|
|
|
|
|
|
|
|
|
AddComment(R"DOC(
|
|
|
|
|
The pooling2d operation calculates the output based on
|
|
|
|
|
the input, poolingType and ksize, strides, paddings parameters.
|
|
|
|
|
Input(X) and output(Out) are in NCHW format. Where N is batch size, C is the
|
|
|
|
|
number of channels, H and W is the height and width of feature.
|
|
|
|
|
Parameters(ksize, strides, paddings) are two elements.
|
|
|
|
|
These two elements represent height and width, respectively.
|
|
|
|
|
)DOC");
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
@ -131,25 +138,30 @@ class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
|
public:
|
|
|
|
|
Pool3dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
|
|
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
|
|
|
AddInput("X",
|
|
|
|
|
"The input tensor of pooling operator. "
|
|
|
|
|
"The format of input tensor is NCDHW. Where N is batch size, C is "
|
|
|
|
|
"the "
|
|
|
|
|
"number of channels, D, H and W is the depth, height and width of "
|
|
|
|
|
"feature.");
|
|
|
|
|
AddInput(
|
|
|
|
|
"X",
|
|
|
|
|
"The input tensor of pooling operator. "
|
|
|
|
|
"The format of input tensor is NCDHW. Where N is batch size, C is "
|
|
|
|
|
"the number of channels, D, H and W is the depth, height and width of "
|
|
|
|
|
"feature.");
|
|
|
|
|
AddOutput("Out",
|
|
|
|
|
"The output tensor of pooling operator."
|
|
|
|
|
"The format of output tensor is also NCDHW.");
|
|
|
|
|
"The format of output tensor is also NCDHW."
|
|
|
|
|
"Where N is batch size, C is "
|
|
|
|
|
"the number of channels, D, H and W is the depth, height and "
|
|
|
|
|
"width of feature.");
|
|
|
|
|
|
|
|
|
|
AddAttr<std::string>("poolingType",
|
|
|
|
|
"PoolingType of pooling operator."
|
|
|
|
|
"str constant equal to 'max' or 'avg'.")
|
|
|
|
|
"Str constant equal to 'max' or 'avg'.")
|
|
|
|
|
.InEnum({"max", "avg"});
|
|
|
|
|
|
|
|
|
|
AddAttr<std::vector<int>>(
|
|
|
|
|
"ksize",
|
|
|
|
|
"Pooling size(depth, height, width) of pooling operator."
|
|
|
|
|
"The pooling size(depth, height, width) of pooling operator."
|
|
|
|
|
"If globalPooling = true, ksize is ignored and need not be "
|
|
|
|
|
"specified."); // TODO(Add checker)
|
|
|
|
|
"specified."); // TODO(Chengduo): Add checker. (Currently,
|
|
|
|
|
// TypedAttrChecker don't support vector type.)
|
|
|
|
|
AddAttr<bool>(
|
|
|
|
|
"globalPooling",
|
|
|
|
|
"Whether to use the globalPooling."
|
|
|
|
@ -161,15 +173,22 @@ class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
|
"strides",
|
|
|
|
|
"Strides(depth, height, width) of pooling operator."
|
|
|
|
|
"Default {1,1,1}.")
|
|
|
|
|
.SetDefault({1, 1, 1}); // TODO(Add checker)
|
|
|
|
|
.SetDefault({1, 1, 1}); // TODO(Chengduo): Add checker. (Currently,
|
|
|
|
|
// TypedAttrChecker don't support vector type.)
|
|
|
|
|
AddAttr<std::vector<int>>(
|
|
|
|
|
"paddings",
|
|
|
|
|
"Paddings(depth, height, width) of pooling operator."
|
|
|
|
|
"Default {0,0,0}.")
|
|
|
|
|
.SetDefault({0, 0, 0}); // TODO(Add checker)
|
|
|
|
|
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
|
|
|
|
|
// TypedAttrChecker don't support vector type.)
|
|
|
|
|
|
|
|
|
|
AddComment(R"DOC(
|
|
|
|
|
The pooling3d operation calculates the output based on
|
|
|
|
|
the input, poolingType and ksize, strides, paddings parameters.
|
|
|
|
|
Input(X) and output(Out) are in NCDHW format. Where N is batch
|
|
|
|
|
size, C is the number of channels, D, H and W is the depth, height and
|
|
|
|
|
width of feature. Parameters(ksize, strides, paddings) are three elements.
|
|
|
|
|
These three elements represent depth, height and width, respectively.
|
|
|
|
|
)DOC");
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|