|
|
|
@ -9287,8 +9287,8 @@ def pad2d(input,
|
|
|
|
|
than height-1. And the width dimension has the same condition.
|
|
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
|
input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format, which is a 4-D Tensor with data type float32.
|
|
|
|
|
paddings (Variable | List[int32]): The padding size. If padding is a List, it must
|
|
|
|
|
input (Tensor): The input image with [N, C, H, W] format or [N, H, W, C] format, which is a 4-D Tensor with data type float32.
|
|
|
|
|
paddings (Tensor | List[int32]): The padding size. If padding is a List, it must
|
|
|
|
|
contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
|
|
|
|
|
Otherwise, it is a 1-D Tensor with shape [4]. Data type is int32.
|
|
|
|
|
Default is [0, 0, 0, 0].
|
|
|
|
@ -9304,10 +9304,7 @@ def pad2d(input,
|
|
|
|
|
name (str, optional) : The default value is None. Normally there is no need for
|
|
|
|
|
user to set this property. For more information, please refer to :ref:`api_guide_Name` .
|
|
|
|
|
|
|
|
|
|
Returns: a 4-D Tensor padded according to paddings and mode and data type is same as input.
|
|
|
|
|
|
|
|
|
|
Return Type: Variable
|
|
|
|
|
|
|
|
|
|
Returns: Tensor, a 4-D Tensor padded according to paddings and mode and data type is same as input.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
.. code-block:: text
|
|
|
|
@ -9340,9 +9337,33 @@ def pad2d(input,
|
|
|
|
|
Code Examples:
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
|
|
|
|
|
result = fluid.layers.pad2d(input=data, paddings=[0, 1, 2, 3], mode='reflect')
|
|
|
|
|
import numpy as np
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
|
|
|
|
|
# example 1
|
|
|
|
|
x_shape = (1, 1, 3, 4)
|
|
|
|
|
x = np.arange(np.prod(x_shape), dtype=np.float32).reshape(x_shape) + 1
|
|
|
|
|
tensor_x = paddle.to_tensor(x)
|
|
|
|
|
y = F.pad2d(tensor_x, paddings=[1, 2, 2, 1], pad_value=1, mode='constant')
|
|
|
|
|
print(y.numpy())
|
|
|
|
|
# [[[[ 1. 1. 1. 1. 1. 1. 1.]
|
|
|
|
|
# [ 1. 1. 1. 2. 3. 4. 1.]
|
|
|
|
|
# [ 1. 1. 5. 6. 7. 8. 1.]
|
|
|
|
|
# [ 1. 1. 9. 10. 11. 12. 1.]
|
|
|
|
|
# [ 1. 1. 1. 1. 1. 1. 1.]
|
|
|
|
|
# [ 1. 1. 1. 1. 1. 1. 1.]]]]
|
|
|
|
|
|
|
|
|
|
# example 2
|
|
|
|
|
x_shape = (1, 1, 2, 3)
|
|
|
|
|
x = np.arange(np.prod(x_shape), dtype=np.float32).reshape(x_shape) + 1
|
|
|
|
|
tensor_x = paddle.to_tensor(x)
|
|
|
|
|
y = F.pad2d(tensor_x, paddings=[1, 1, 1, 1], mode='reflect')
|
|
|
|
|
print(y.numpy())
|
|
|
|
|
# [[[[5. 4. 5. 6. 5.]
|
|
|
|
|
# [2. 1. 2. 3. 2.]
|
|
|
|
|
# [5. 4. 5. 6. 5.]
|
|
|
|
|
# [2. 1. 2. 3. 2.]]]]
|
|
|
|
|
"""
|
|
|
|
|
check_variable_and_dtype(
|
|
|
|
|
input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
|
|
|
|
|