"add book recommender_system testing" (#5143)

* "add sequence conv layer"

* "add book recommender_system testing"

* "add training loop"

* "add sequence layer"

* "add recommender system training data"

* "fix conv2d layer bug"

* add sequence_conv_pool

* "fix input is Null"

* add networks

* "fix based comment"

* "add sum op layer"

* "merge layers"

* Update layers.py

* "fix input is NULL bug"

* "debug embedding table"

* "modify layers.py"

* "fix pool interface"

* "add export type to layers"

* "fix based on comment"

* "need lod info support in all operator"

* "remove accuracy layer"

* "tuning learning rate"

* "add sparse test"

* "add gpu test"

* Update test_recommender_system.py
fix-typo
dzhwinter 8 years ago committed by GitHub
parent f48159ade0
commit 69011c1821
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -197,11 +197,11 @@ def sums(input, program=None, init_program=None):
return out
def cos_sim(X, Y, program=None, init_program=None):
helper = LayerHelper('cos_sim', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype("X"))
xnorm = helper.create_tmp_variable(dtype=helper.input_dtype("X"))
ynorm = helper.create_tmp_variable(dtype=helper.input_dtype("X"))
def cos_sim(X, Y, **kwargs):
helper = LayerHelper('cos_sim', **kwargs)
out = helper.create_tmp_variable(dtype=X.data_type)
xnorm = helper.create_tmp_variable(dtype=X.data_type)
ynorm = helper.create_tmp_variable(dtype=X.data_type)
helper.append_op(
type='cos_sim',
inputs={'X': [X],
@ -209,7 +209,7 @@ def cos_sim(X, Y, program=None, init_program=None):
outputs={'Out': [out],
'XNorm': [xnorm],
'YNorm': [ynorm]})
return out, xnorm, ynorm
return out
def cross_entropy(input, label, **kwargs):
@ -265,7 +265,7 @@ def accuracy(input, label, k=1, **kwargs):
def sequence_conv(input,
num_filters,
filter_size=3,
stride=1,
filter_stride=1,
padding=None,
bias_attr=None,
param_attr=None,
@ -291,9 +291,9 @@ def sequence_conv(input,
},
outputs={"Out": pre_bias},
attrs={
'context_stride': stride,
'context_start': 0,
'context_length': filter_size
'contextStride': filter_stride,
'contextStart': 0,
'contextLength': filter_size
})
pre_act = helper.append_bias_op(pre_bias)
return helper.append_activation(pre_act)

@ -101,6 +101,7 @@ def img_conv_group(input,
def sequence_conv_pool(input,
num_filters,
filter_size,
act="sigmoid",
pool_type="max",
program=None,
init_program=None):

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save