|
|
|
@ -3,7 +3,7 @@ import paddle.v2.framework.core as core
|
|
|
|
|
import unittest
|
|
|
|
|
import numpy as np
|
|
|
|
|
from paddle.v2.framework.op import Operator, RecurrentOp
|
|
|
|
|
from gradient_checker import GradientChecker
|
|
|
|
|
from op_test import get_numeric_gradient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def py_sigmoid(x):
|
|
|
|
@ -48,7 +48,7 @@ class PySimpleRNN(object):
|
|
|
|
|
else:
|
|
|
|
|
pre_mem = self.h_boot
|
|
|
|
|
xW = np.matmul(x, self.W)
|
|
|
|
|
hU = np.matmul(mem, self.U)
|
|
|
|
|
hU = np.matmul(pre_mem, self.U)
|
|
|
|
|
|
|
|
|
|
sum = xW + hU
|
|
|
|
|
self.mems[step_id] = py_sigmoid(sum)
|
|
|
|
@ -159,6 +159,7 @@ class RecurrentOpTest(unittest.TestCase):
|
|
|
|
|
print
|
|
|
|
|
print 'py_output', py_output
|
|
|
|
|
self.assertEqual(pd_output.shape, py_output.shape)
|
|
|
|
|
self.assertTrue(np.isclose(pd_output, py_output, rtol=0.1).all())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RecurrentGradientOpTest(unittest.TestCase):
|
|
|
|
@ -172,8 +173,6 @@ class RecurrentGradientOpTest(unittest.TestCase):
|
|
|
|
|
outlinks=["h"],
|
|
|
|
|
step_scopes="step_scopes",
|
|
|
|
|
# attributes
|
|
|
|
|
inlink_alias=["x@alias"],
|
|
|
|
|
outlink_alias=["h@alias"],
|
|
|
|
|
pre_memories=["h@pre"],
|
|
|
|
|
memories=["h@alias"])
|
|
|
|
|
|
|
|
|
@ -181,11 +180,11 @@ class RecurrentGradientOpTest(unittest.TestCase):
|
|
|
|
|
stepnet = core.Net.create()
|
|
|
|
|
x_fc_op = Operator("mul", X="x@alias", Y="W", Out="Wx")
|
|
|
|
|
h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh")
|
|
|
|
|
sum_op = Operator("add_two", X="Wx", Y="Uh", Out="sum")
|
|
|
|
|
sum_op = Operator("add", X="Wx", Y="Uh", Out="sum")
|
|
|
|
|
sig_op = Operator("sigmoid", X="sum", Y="h@alias")
|
|
|
|
|
|
|
|
|
|
for op in [x_fc_op, h_fc_op, sum_op, sig_op]:
|
|
|
|
|
stepnet.add_op(op)
|
|
|
|
|
stepnet.append_op(op)
|
|
|
|
|
stepnet.complete_add_op(True)
|
|
|
|
|
self.forward_op.set_stepnet(stepnet)
|
|
|
|
|
|
|
|
|
|