[NGraph] Enable elementwise_div operator test=develop (#17515)

* Enable elementwise_div operator test=develop

* Fix update date test=develop
dependabot/pip/python/requests-2.20.0
mozga-intel 6 years ago committed by tensor-tang
parent 82b834cbdb
commit 6a6bf597f7

@ -0,0 +1,103 @@
/*Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/elementwise_node.h"
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace paddle {
namespace operators {
namespace ngraphs {
void BuildElementwiseDivGradNode(
const std::shared_ptr<paddle::framework::OperatorBase>& op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
int axis = op_attrs.Get<int>("axis");
auto dout = paddle::platform::GetInputNode(op, "Out@GRAD", ngb_node_map);
auto y = paddle::platform::GetInputNode(op, "Y", ngb_node_map);
auto out = paddle::platform::GetInputNode(op, "Out", ngb_node_map);
auto dout_shape = dout->get_shape();
auto y_shape = y->get_shape();
if (dout->get_element_type() != y->get_element_type()) {
y = std::make_shared<ngraph::op::Convert>(y, dout->get_element_type());
}
auto dy_hd = std::make_shared<ngraph::op::Multiply>(out, dout);
if (dout_shape == y_shape) {
auto dx = std::make_shared<ngraph::op::Divide>(dout, y);
auto dy = std::make_shared<ngraph::op::Divide>(dy_hd, -y);
paddle::platform::SetOutputNode(op, "X@GRAD", dx, ngb_node_map);
paddle::platform::SetOutputNode(op, "Y@GRAD", dy, ngb_node_map);
} else {
auto dy_hd_shape = dy_hd->get_shape();
axis = (axis == -1 ? dy_hd_shape.size() - y_shape.size() : axis);
paddle::platform::TrimTrailingSingularDims(&y_shape);
axis = (y_shape.size() == 0 ? dy_hd_shape.size() : axis);
int pre, n, post;
paddle::platform::GetMidDims(dy_hd_shape, y_shape, axis, &pre, &n, &post);
ngraph::Shape lhs_shape{};
lhs_shape.push_back(pre);
lhs_shape.push_back(n);
if (post != 1) {
lhs_shape.push_back(post);
}
std::vector<size_t> dy_order(dout_shape.size());
std::iota(std::begin(dy_order), std::end(dy_order), 0);
auto dy_hd_reshape = std::make_shared<ngraph::op::Reshape>(
dy_hd, ngraph::AxisVector(dy_order), lhs_shape);
ngraph::AxisSet axis_set{0};
if (post != 1) {
axis_set.insert(2);
}
auto dy_sum = std::make_shared<ngraph::op::Sum>(dy_hd_reshape, axis_set);
auto dy_sum_yshape = std::make_shared<ngraph::op::Reshape>(
dy_sum, ngraph::AxisVector{0}, y->get_shape());
auto dy_ = std::make_shared<ngraph::op::Divide>(dy_sum_yshape, -y);
paddle::platform::SetOutputNode(op, "Y@GRAD", dy_, ngb_node_map);
y_shape = y->get_shape();
std::vector<size_t> y_order(y_shape.size() == 0 ? 1 : y_shape.size());
std::iota(std::begin(y_order), std::end(y_order), 0);
auto y_reshape = std::make_shared<ngraph::op::Reshape>(
y, ngraph::AxisVector(y_order), ngraph::Shape{(size_t)n});
auto y_broadcast =
std::make_shared<ngraph::op::Broadcast>(y_reshape, lhs_shape, axis_set);
std::vector<size_t> lhs_order(lhs_shape.size());
std::iota(std::begin(lhs_order), std::end(lhs_order), 0);
auto y_broadcast_reshape = std::make_shared<ngraph::op::Reshape>(
y_broadcast, ngraph::AxisVector(lhs_order), dout_shape);
auto dx = std::make_shared<ngraph::op::Divide>(dout, y_broadcast_reshape);
paddle::platform::SetOutputNode(op, "X@GRAD", dx, ngb_node_map);
}
}
} // namespace ngraphs
} // namespace operators
} // namespace paddle
REGISTER_NG_OP(elementwise_div_grad, BuildElementwiseDivGradNode);

@ -61,6 +61,7 @@ void BuildElementwiseCompareNode(
auto out = std::make_shared<T>(x, y);
paddle::platform::SetOutputNode(op, "Out", out, ngb_node_map);
}
} // namespace ngraphs
} // namespace operators
} // namespace paddle
@ -73,3 +74,4 @@ REGISTER_NG_OP(elementwise_sub,
REGISTER_NG_OP(elementwise_min,
BuildElementwiseBinaryNode<ngraph::op::Minimum>);
REGISTER_NG_OP(less_than, BuildElementwiseCompareNode<ngraph::op::Less>);
REGISTER_NG_OP(elementwise_div, BuildElementwiseBinaryNode<ngraph::op::Divide>);

@ -0,0 +1,22 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest, sys
sys.path.append("../")
from test_elementwise_div_op import ElementwiseDivOp, TestElementwiseDivOp_scalar, TestElementwiseDivOp_Vector, TestElementwiseDivOp_broadcast_0, TestElementwiseDivOp_broadcast_1, TestElementwiseDivOp_broadcast_2, TestElementwiseDivOp_broadcast_3
if __name__ == '__main__':
unittest.main()
Loading…
Cancel
Save