|
|
|
@ -1,4 +1,4 @@
|
|
|
|
|
#edit-mode: -*- python -*-
|
|
|
|
|
# edit-mode: -*- python -*-
|
|
|
|
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
@ -35,46 +35,37 @@ speaker2 = data_layer(name="word2", size=dict_dim)
|
|
|
|
|
emb1 = embedding_layer(input=speaker1, size=word_dim)
|
|
|
|
|
emb2 = embedding_layer(input=speaker2, size=word_dim)
|
|
|
|
|
|
|
|
|
|
# This hierachical RNN is designed to be equivalent to the simple RNN in
|
|
|
|
|
# sequence_rnn_multi_unequalength_inputs.conf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# This hierarchical RNN is designed to be equivalent to the simple RNN in
|
|
|
|
|
# sequence_rnn_multi_unequalength_inputs.conf
|
|
|
|
|
def outer_step(x1, x2):
|
|
|
|
|
outer_mem1 = memory(name="outer_rnn_state1", size=hidden_dim)
|
|
|
|
|
outer_mem2 = memory(name="outer_rnn_state2", size=hidden_dim)
|
|
|
|
|
|
|
|
|
|
def inner_step1(y):
|
|
|
|
|
inner_mem = memory(
|
|
|
|
|
name='inner_rnn_state_' + y.name,
|
|
|
|
|
size=hidden_dim,
|
|
|
|
|
boot_layer=outer_mem1)
|
|
|
|
|
out = fc_layer(
|
|
|
|
|
input=[y, inner_mem],
|
|
|
|
|
size=hidden_dim,
|
|
|
|
|
act=TanhActivation(),
|
|
|
|
|
bias_attr=True,
|
|
|
|
|
name='inner_rnn_state_' + y.name)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
def inner_step2(y):
|
|
|
|
|
inner_mem = memory(
|
|
|
|
|
name='inner_rnn_state_' + y.name,
|
|
|
|
|
size=hidden_dim,
|
|
|
|
|
boot_layer=outer_mem2)
|
|
|
|
|
out = fc_layer(
|
|
|
|
|
input=[y, inner_mem],
|
|
|
|
|
size=hidden_dim,
|
|
|
|
|
act=TanhActivation(),
|
|
|
|
|
bias_attr=True,
|
|
|
|
|
name='inner_rnn_state_' + y.name)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
encoder1 = recurrent_group(step=inner_step1, name='inner1', input=x1)
|
|
|
|
|
|
|
|
|
|
encoder2 = recurrent_group(step=inner_step2, name='inner2', input=x2)
|
|
|
|
|
|
|
|
|
|
sentence_last_state1 = last_seq(input=encoder1, name='outer_rnn_state1')
|
|
|
|
|
sentence_last_state2_ = last_seq(input=encoder2, name='outer_rnn_state2')
|
|
|
|
|
index = [0]
|
|
|
|
|
|
|
|
|
|
def inner_step(ipt):
|
|
|
|
|
index[0] += 1
|
|
|
|
|
i = index[0]
|
|
|
|
|
outer_mem = memory(name="outer_rnn_state_%d" % i, size=hidden_dim)
|
|
|
|
|
|
|
|
|
|
def inner_step_impl(y):
|
|
|
|
|
inner_mem = memory(
|
|
|
|
|
name="inner_rnn_state_" + y.name,
|
|
|
|
|
size=hidden_dim,
|
|
|
|
|
boot_layer=outer_mem)
|
|
|
|
|
out = fc_layer(
|
|
|
|
|
input=[y, inner_mem],
|
|
|
|
|
size=hidden_dim,
|
|
|
|
|
act=TanhActivation(),
|
|
|
|
|
bias_attr=True,
|
|
|
|
|
name='inner_rnn_state_' + y.name)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
encoder = recurrent_group(
|
|
|
|
|
step=inner_step_impl, name='inner_%d' % i, input=ipt)
|
|
|
|
|
last = last_seq(name="outer_rnn_state_%d" % i, input=encoder)
|
|
|
|
|
return encoder, last
|
|
|
|
|
|
|
|
|
|
_, sentence_last_state1 = inner_step(ipt=x1)
|
|
|
|
|
encoder2, _ = inner_step(ipt=x2)
|
|
|
|
|
|
|
|
|
|
encoder1_expand = expand_layer(
|
|
|
|
|
input=sentence_last_state1, expand_as=encoder2)
|
|
|
|
|