parent
f5681f1551
commit
6bc6ccd187
@ -0,0 +1,130 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <algorithm>
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/platform/cuda_helper.h"
|
||||
#include "paddle/platform/gpu_info.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using platform::PADDLE_CUDA_NUM_THREADS;
|
||||
|
||||
template <typename T>
|
||||
__global__ void FillFirstRow(T* dist, const int N) {
|
||||
int idx = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (idx < N + 1) {
|
||||
dist[idx] = idx;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void FillFirstColumn(T* dist, const int M, const int N) {
|
||||
int idx = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (idx < M + 1) {
|
||||
dist[idx * (N + 1)] = idx;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void Levenshtein(T* dist, const T* x1, const T* x2, const int M,
|
||||
const int N, const int start) {
|
||||
int idx = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int offset = N;
|
||||
int index = start + idx * offset;
|
||||
int row = index / (N + 1);
|
||||
int col = index % (N + 1);
|
||||
if (row > 0 && col > 0 && row < M + 1 && col < N + 1) {
|
||||
int cost = x1[row - 1] == x2[col - 1] ? 0 : 1;
|
||||
int dels = dist[(row - 1) * (N + 1) + col] + 1;
|
||||
int ins = dist[row * (N + 1) + col - 1] + 1;
|
||||
int subs = dist[(row - 1) * (N + 1) + (col - 1)] + cost;
|
||||
dist[index] = min(dels, min(ins, subs));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Place, typename T>
|
||||
class CTCEditDistanceGPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const {
|
||||
auto* out_t = ctx.Output<framework::Tensor>("Out");
|
||||
|
||||
auto* x1_t = ctx.Input<framework::Tensor>("X1");
|
||||
auto* x2_t = ctx.Input<framework::Tensor>("X2");
|
||||
|
||||
out_t->mutable_data<float>(ctx.GetPlace());
|
||||
|
||||
auto normalized = ctx.Attr<bool>("normalized");
|
||||
auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
|
||||
ctx.device_context())
|
||||
.stream();
|
||||
|
||||
auto m = x1_t->numel();
|
||||
auto n = x2_t->numel();
|
||||
T distance = 0;
|
||||
if (m == 0) {
|
||||
distance = n;
|
||||
} else if (n == 0) {
|
||||
distance = m;
|
||||
} else {
|
||||
framework::Tensor dist_t;
|
||||
dist_t.Resize({m + 1, n + 1});
|
||||
dist_t.mutable_data<T>(ctx.GetPlace());
|
||||
auto dist = dist_t.data<T>();
|
||||
auto x1 = x1_t->data<T>();
|
||||
auto x2 = x2_t->data<T>();
|
||||
|
||||
FillFirstColumn<T><<<1 + m / PADDLE_CUDA_NUM_THREADS,
|
||||
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, m, n);
|
||||
|
||||
FillFirstRow<T><<<1 + n / PADDLE_CUDA_NUM_THREADS,
|
||||
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, n);
|
||||
// compute the elements of distance matrix in the anti-diagonal diretion
|
||||
for (size_t slice = 2; slice < m + n + 1; ++slice) {
|
||||
int z_m = slice < m + 1 ? 0 : slice - m;
|
||||
int z_n = slice < n + 1 ? 0 : slice - n;
|
||||
// number of elments in the same anti-diagonal line
|
||||
int size = slice - (z_m + z_n) + 1;
|
||||
int start = slice < n + 1 ? slice : z_n * (n + 1) - 1;
|
||||
Levenshtein<T><<<1 + (size - 1) / PADDLE_CUDA_NUM_THREADS,
|
||||
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, x1, x2, m,
|
||||
n, start);
|
||||
}
|
||||
|
||||
Place gpu_place = boost::get<Place>(ctx.GetPlace());
|
||||
memory::Copy(platform::CPUPlace(), &distance, gpu_place,
|
||||
dist + m * (n + 1) + n, sizeof(T), stream);
|
||||
}
|
||||
|
||||
if (normalized) {
|
||||
distance = distance / n;
|
||||
}
|
||||
auto out = out_t->data<float>();
|
||||
Place gpu_place = boost::get<Place>(ctx.GetPlace());
|
||||
float dist_f = distance;
|
||||
memory::Copy(gpu_place, out, platform::CPUPlace(), &dist_f, sizeof(float),
|
||||
stream);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
ctc_edit_distance,
|
||||
ops::CTCEditDistanceGPUKernel<paddle::platform::GPUPlace, int>,
|
||||
ops::CTCEditDistanceGPUKernel<paddle::platform::GPUPlace, int64_t>);
|
Loading…
Reference in new issue