|
|
|
@ -281,14 +281,16 @@ def generate_activation_fn(op_type):
|
|
|
|
|
|
|
|
|
|
Return type
|
|
|
|
|
Variable
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
inputs = fluid.data(name="x", shape = [None, 4], dtype='float32')
|
|
|
|
|
output = fluid.layers.%s(inputs)
|
|
|
|
|
output = paddle.%s(inputs)
|
|
|
|
|
|
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
@ -297,7 +299,14 @@ Examples:
|
|
|
|
|
img = np.array([[1.0, 2.0, 3.0, 4.0]]).astype(np.float32)
|
|
|
|
|
res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
|
|
|
|
|
print(res)
|
|
|
|
|
""" % op_type
|
|
|
|
|
|
|
|
|
|
# using dygraph
|
|
|
|
|
with paddle.imperative.guard():
|
|
|
|
|
dygraph_input = paddle.imperative.to_variable(img)
|
|
|
|
|
dygraph_output = paddle.%s(dygraph_input)
|
|
|
|
|
print(dygraph_output.numpy())
|
|
|
|
|
""" % (op_type, op_type)
|
|
|
|
|
|
|
|
|
|
return func
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|