Add distributed label semantic role book chapter

add_depthwiseConv_op_gpu
Helin Wang 7 years ago
parent 020630b7a3
commit 6c0723661e

@ -0,0 +1,225 @@
import math
import numpy as np
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05
import paddle.v2.fluid as fluid
import time
import os
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
mix_hidden_lr = 1e-3
IS_SPARSE = True
PASS_NUM = 10
BATCH_SIZE = 20
embedding_name = 'emb'
def load_parameter(file_name, h, w):
with open(file_name, 'rb') as f:
f.read(16) # skip header.
return np.fromfile(f, dtype=np.float32).reshape(h, w)
def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
**ignored):
# 8 features
predicate_embedding = fluid.layers.embedding(
input=predicate,
size=[pred_len, word_dim],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr='vemb')
mark_embedding = fluid.layers.embedding(
input=mark,
size=[mark_dict_len, mark_dim],
dtype='float32',
is_sparse=IS_SPARSE)
word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
fluid.layers.embedding(
size=[word_dict_len, word_dim],
input=x,
param_attr=fluid.ParamAttr(
name=embedding_name, trainable=False)) for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
hidden_0_layers = [
fluid.layers.fc(input=emb, size=hidden_dim) for emb in emb_layers
]
hidden_0 = fluid.layers.sums(input=hidden_0_layers)
lstm_0 = fluid.layers.dynamic_lstm(
input=hidden_0,
size=hidden_dim,
candidate_activation='relu',
gate_activation='sigmoid',
cell_activation='sigmoid')
# stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]
for i in range(1, depth):
mix_hidden = fluid.layers.sums(input=[
fluid.layers.fc(input=input_tmp[0], size=hidden_dim),
fluid.layers.fc(input=input_tmp[1], size=hidden_dim)
])
lstm = fluid.layers.dynamic_lstm(
input=mix_hidden,
size=hidden_dim,
candidate_activation='relu',
gate_activation='sigmoid',
cell_activation='sigmoid',
is_reverse=((i % 2) == 1))
input_tmp = [mix_hidden, lstm]
feature_out = fluid.layers.sums(input=[
fluid.layers.fc(input=input_tmp[0], size=label_dict_len),
fluid.layers.fc(input=input_tmp[1], size=label_dict_len)
])
return feature_out
def to_lodtensor(data, place):
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = fluid.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
def main():
# define network topology
word = fluid.layers.data(
name='word_data', shape=[1], dtype='int64', lod_level=1)
predicate = fluid.layers.data(
name='verb_data', shape=[1], dtype='int64', lod_level=1)
ctx_n2 = fluid.layers.data(
name='ctx_n2_data', shape=[1], dtype='int64', lod_level=1)
ctx_n1 = fluid.layers.data(
name='ctx_n1_data', shape=[1], dtype='int64', lod_level=1)
ctx_0 = fluid.layers.data(
name='ctx_0_data', shape=[1], dtype='int64', lod_level=1)
ctx_p1 = fluid.layers.data(
name='ctx_p1_data', shape=[1], dtype='int64', lod_level=1)
ctx_p2 = fluid.layers.data(
name='ctx_p2_data', shape=[1], dtype='int64', lod_level=1)
mark = fluid.layers.data(
name='mark_data', shape=[1], dtype='int64', lod_level=1)
feature_out = db_lstm(**locals())
target = fluid.layers.data(
name='target', shape=[1], dtype='int64', lod_level=1)
crf_cost = fluid.layers.linear_chain_crf(
input=feature_out,
label=target,
param_attr=fluid.ParamAttr(
name='crfw', learning_rate=mix_hidden_lr))
avg_cost = fluid.layers.mean(x=crf_cost)
# TODO(qiao)
# check other optimizers and check why out will be NAN
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.0001)
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
# TODO(qiao)
# add dependency track and move this config before optimizer
crf_decode = fluid.layers.crf_decoding(
input=feature_out, param_attr=fluid.ParamAttr(name='crfw'))
chunk_evaluator = fluid.evaluator.ChunkEvaluator(
input=crf_decode,
label=target,
chunk_scheme="IOB",
num_chunk_types=int(math.ceil((label_dict_len - 1) / 2.0)))
train_data = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.conll05.test(), buf_size=8192),
batch_size=BATCH_SIZE)
place = fluid.CPUPlace()
feeder = fluid.DataFeeder(
feed_list=[
word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate, mark, target
],
place=place)
exe = fluid.Executor(place)
t = fluid.DistributeTranspiler()
pserver_endpoints = os.getenv("PSERVERS")
# server endpoint for current node
current_endpoint = os.getenv("SERVER_ENDPOINT")
# run as trainer or parameter server
training_role = os.getenv(
"TRAINING_ROLE", "TRAINER") # get the training role: trainer/pserver
t.transpile(
optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
if training_role == "PSERVER":
if not current_endpoint:
print("need env SERVER_ENDPOINT")
exit(1)
pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops)
exe.run(fluid.default_startup_program())
exe.run(pserver_prog)
elif training_role == "TRAINER":
trainer_prog = t.get_trainer_program()
start_time = time.time()
batch_id = 0
exe.run(fluid.default_startup_program())
embedding_param = fluid.global_scope().find_var(
embedding_name).get_tensor()
embedding_param.set(
load_parameter(conll05.get_embedding(), word_dict_len, word_dim),
place)
for pass_id in xrange(PASS_NUM):
chunk_evaluator.reset(exe)
for data in train_data():
cost, precision, recall, f1_score = exe.run(
trainer_prog,
feed=feeder.feed(data),
fetch_list=[avg_cost] + chunk_evaluator.metrics)
pass_precision, pass_recall, pass_f1_score = chunk_evaluator.eval(
exe)
if batch_id % 10 == 0:
print("avg_cost:" + str(cost) + " precision:" + str(
precision) + " recall:" + str(recall) + " f1_score:" +
str(f1_score) + " pass_precision:" + str(
pass_precision) + " pass_recall:" + str(
pass_recall) + " pass_f1_score:" + str(
pass_f1_score))
if batch_id != 0:
print("second per batch: " + str((time.time(
) - start_time) / batch_id))
batch_id = batch_id + 1
if __name__ == '__main__':
main()
Loading…
Cancel
Save