|
|
|
@ -56,7 +56,7 @@ protected:
|
|
|
|
|
w->GetMutable<Tensor>()->mutable_data<float>(
|
|
|
|
|
make_ddim(std::vector<int>{30, 30}), platform::CPUPlace());
|
|
|
|
|
|
|
|
|
|
for (auto boot : std::vector<std::string>{"x_boot", "h_boot"}) {
|
|
|
|
|
for (auto boot : std::vector<std::string>{"h_boot"}) {
|
|
|
|
|
LOG(INFO) << "create global variable " << boot;
|
|
|
|
|
Variable* h_boot = scope_->CreateVariable(boot);
|
|
|
|
|
h_boot->GetMutable<Tensor>()->mutable_data<float>(
|
|
|
|
@ -80,7 +80,6 @@ protected:
|
|
|
|
|
op_desc.add_inputs("x0");
|
|
|
|
|
op_desc.add_inputs("x1");
|
|
|
|
|
// boot_memories 3
|
|
|
|
|
op_desc.add_inputs("x_boot");
|
|
|
|
|
op_desc.add_inputs("h_boot");
|
|
|
|
|
// step net 5
|
|
|
|
|
op_desc.add_inputs("step_net");
|
|
|
|
@ -92,7 +91,7 @@ protected:
|
|
|
|
|
auto _input_format = std::vector<int>{
|
|
|
|
|
0, // in_link
|
|
|
|
|
3, // memories
|
|
|
|
|
5 // step_net
|
|
|
|
|
4 // step_net
|
|
|
|
|
};
|
|
|
|
|
auto input_format = op_desc.add_attrs();
|
|
|
|
|
input_format->set_name("input_format");
|
|
|
|
@ -130,12 +129,11 @@ protected:
|
|
|
|
|
inlink_alias->add_strings(item);
|
|
|
|
|
}
|
|
|
|
|
// pre memories
|
|
|
|
|
for (const auto& item :
|
|
|
|
|
std::vector<std::string>{"rnn/x@pre", "rnn/h@pre"}) {
|
|
|
|
|
for (const auto& item : std::vector<std::string>{"rnn/h@pre"}) {
|
|
|
|
|
pre_memories->add_strings(item);
|
|
|
|
|
}
|
|
|
|
|
// memories
|
|
|
|
|
for (const auto& item : std::vector<std::string>{"rnn/x", "rnn/h"}) {
|
|
|
|
|
for (const auto& item : std::vector<std::string>{"rnn/h"}) {
|
|
|
|
|
memories->add_strings(item);
|
|
|
|
|
}
|
|
|
|
|
// output alias
|
|
|
|
@ -152,14 +150,11 @@ protected:
|
|
|
|
|
LOG(INFO) << "create variable step_net";
|
|
|
|
|
Variable* var = scope_->CreateVariable("step_net");
|
|
|
|
|
auto net = var->GetMutable<NetOp>();
|
|
|
|
|
// rnn/s is net's input or output?
|
|
|
|
|
net->inputs_ = {"rnn/h@pre", "rnn/w", "rnn/x"};
|
|
|
|
|
net->inputs_ = {"rnn/s", "rnn/h"};
|
|
|
|
|
net->AddOp(
|
|
|
|
|
OpRegistry::CreateOp("mul", {"rnn/h@pre", "rnn/w"}, {"rnn/s"}, {}));
|
|
|
|
|
|
|
|
|
|
net->AddOp(
|
|
|
|
|
OpRegistry::CreateOp("add_two", {"rnn/x", "rnn/s"}, {"rnn/h"}, {}));
|
|
|
|
|
OpRegistry::CreateOp("add_two", {"x@alias", "rnn/s"}, {"rnn/h"}, {}));
|
|
|
|
|
net->CompleteAddOp();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -303,7 +298,7 @@ protected:
|
|
|
|
|
std::vector<std::shared_ptr<Scope>>* step_scopes =
|
|
|
|
|
scope_->GetVariable("step_scopes")
|
|
|
|
|
->GetMutable<std::vector<std::shared_ptr<Scope>>>();
|
|
|
|
|
rnn::SegmentInputs(*step_scopes, std::vector<rnn::Link>{inlink}, 10);
|
|
|
|
|
rnn::SegmentInputs(*step_scopes, std::vector<rnn::Link>{inlink}, 10, true);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void LinkeMemories() {
|
|
|
|
@ -318,7 +313,7 @@ protected:
|
|
|
|
|
scope_->GetVariable("step_scopes")
|
|
|
|
|
->GetMutable<std::vector<std::shared_ptr<Scope>>>();
|
|
|
|
|
for (int i = 1; i < 10; ++i) {
|
|
|
|
|
rnn::LinkMemories(*step_scopes, memories, i, -1);
|
|
|
|
|
rnn::LinkMemories(*step_scopes, memories, i, -1, true);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -347,7 +342,7 @@ TEST(RecurrentOp, LinkMemories) {
|
|
|
|
|
scope->CreateVariable("pre_h");
|
|
|
|
|
auto tensor = scope->CreateVariable("h")->GetMutable<Tensor>();
|
|
|
|
|
float* data = tensor->mutable_data<float>(make_ddim({15, 20}), CPUPlace());
|
|
|
|
|
for (int i = 0; i < 15 * 20; ++i) {
|
|
|
|
|
for (int j = 0; j < 15 * 20; ++j) {
|
|
|
|
|
data[i] = rand() * (1. / (double)RAND_MAX);
|
|
|
|
|
}
|
|
|
|
|
step_scopes.push_back(scope);
|
|
|
|
@ -362,7 +357,7 @@ TEST(RecurrentOp, LinkMemories) {
|
|
|
|
|
memories.push_back(mem_attr);
|
|
|
|
|
|
|
|
|
|
for (int i = 1; i < len; ++i) {
|
|
|
|
|
rnn::LinkMemories(step_scopes, memories, i, -1);
|
|
|
|
|
rnn::LinkMemories(step_scopes, memories, i, -1, false);
|
|
|
|
|
}
|
|
|
|
|
// check
|
|
|
|
|
for (int i = 0; i < len - 1; ++i) {
|
|
|
|
@ -372,13 +367,13 @@ TEST(RecurrentOp, LinkMemories) {
|
|
|
|
|
->GetVariable("pre_h")
|
|
|
|
|
->GetMutable<Tensor>()
|
|
|
|
|
->data<float>();
|
|
|
|
|
for (size_t i = 0; i < 15 * 20; ++i) {
|
|
|
|
|
ASSERT_FLOAT_EQ(a[i], b[i]);
|
|
|
|
|
for (size_t j = 0; j < 15 * 20; ++j) {
|
|
|
|
|
ASSERT_FLOAT_EQ(a[j], b[j]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (int i = len - 2; i >= 0; --i) {
|
|
|
|
|
rnn::LinkMemories(step_scopes, memories, i, 1);
|
|
|
|
|
rnn::LinkMemories(step_scopes, memories, i, 1, false);
|
|
|
|
|
}
|
|
|
|
|
// check
|
|
|
|
|
for (int i = len - 2; i >= 0; --i) {
|
|
|
|
@ -390,8 +385,8 @@ TEST(RecurrentOp, LinkMemories) {
|
|
|
|
|
->GetVariable("h")
|
|
|
|
|
->GetMutable<Tensor>()
|
|
|
|
|
->data<float>();
|
|
|
|
|
for (size_t i = 0; i < 15 * 20; ++i) {
|
|
|
|
|
ASSERT_FLOAT_EQ(a[i], b[i]);
|
|
|
|
|
for (size_t j = 0; j < 15 * 20; ++j) {
|
|
|
|
|
ASSERT_FLOAT_EQ(a[j], b[j]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|