|
|
|
|
@ -12,27 +12,41 @@
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License
|
|
|
|
|
|
|
|
|
|
import sys
|
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
|
from api_v2_vgg import vgg_bn_drop
|
|
|
|
|
from api_v2_resnet import resnet_cifar10
|
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# End batch and end pass event handler
|
|
|
|
|
def event_handler(event):
|
|
|
|
|
if isinstance(event, paddle.event.EndIteration):
|
|
|
|
|
if event.batch_id % 100 == 0:
|
|
|
|
|
print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id,
|
|
|
|
|
event.cost)
|
|
|
|
|
print "\nPass %d, Batch %d, Cost %f, %s" % (
|
|
|
|
|
event.pass_id, event.batch_id, event.cost, event.metrics)
|
|
|
|
|
else:
|
|
|
|
|
sys.stdout.write('.')
|
|
|
|
|
sys.stdout.flush()
|
|
|
|
|
if isinstance(event, paddle.event.EndPass):
|
|
|
|
|
result = trainer.test(
|
|
|
|
|
reader=paddle.reader.batched(
|
|
|
|
|
paddle.dataset.cifar.test10(), batch_size=128),
|
|
|
|
|
reader_dict={'image': 0,
|
|
|
|
|
'label': 1})
|
|
|
|
|
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
datadim = 3 * 32 * 32
|
|
|
|
|
classdim = 10
|
|
|
|
|
|
|
|
|
|
# PaddlePaddle init
|
|
|
|
|
paddle.init(use_gpu=True, trainer_count=1)
|
|
|
|
|
|
|
|
|
|
image = paddle.layer.data(
|
|
|
|
|
name="image", type=paddle.data_type.dense_vector(datadim))
|
|
|
|
|
|
|
|
|
|
# Add neural network config
|
|
|
|
|
# option 1. resnet
|
|
|
|
|
net = resnet_cifar10(image, depth=32)
|
|
|
|
|
# option 2. vgg
|
|
|
|
|
@ -46,8 +60,10 @@ def main():
|
|
|
|
|
name="label", type=paddle.data_type.integer_value(classdim))
|
|
|
|
|
cost = paddle.layer.classification_cost(input=out, label=lbl)
|
|
|
|
|
|
|
|
|
|
# Create parameters
|
|
|
|
|
parameters = paddle.parameters.create(cost)
|
|
|
|
|
|
|
|
|
|
# Create optimizer
|
|
|
|
|
momentum_optimizer = paddle.optimizer.Momentum(
|
|
|
|
|
momentum=0.9,
|
|
|
|
|
regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
|
|
|
|
|
@ -57,6 +73,7 @@ def main():
|
|
|
|
|
learning_rate_schedule='discexp',
|
|
|
|
|
batch_size=128)
|
|
|
|
|
|
|
|
|
|
# Create trainer
|
|
|
|
|
trainer = paddle.trainer.SGD(cost=cost,
|
|
|
|
|
parameters=parameters,
|
|
|
|
|
update_equation=momentum_optimizer)
|
|
|
|
|
|