add gather_op xpu, test=kunlun (#27822)
* add gather_op xpu, test=develop, test=kunlun * fix ut, test=develop, test=kunlun * fix the ut,test=develop, test=kunlunmy_2.0rc
parent
e6a4d1705a
commit
6d63cd2b93
@ -0,0 +1,153 @@
|
||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
#include "paddle/fluid/operators/gather_op.h"
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "paddle/fluid/framework/ddim.h"
|
||||
#include "paddle/fluid/framework/op_version_registry.h"
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename T>
|
||||
class GatherOpXPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||
PADDLE_ENFORCE_EQ(
|
||||
platform::is_xpu_place(ctx.GetPlace()), true,
|
||||
platform::errors::PreconditionNotMet("This kernel only runs on XPU."));
|
||||
|
||||
auto *x = ctx.Input<Tensor>("X");
|
||||
auto *index = ctx.Input<Tensor>("Index");
|
||||
auto *output = ctx.Output<Tensor>("Out");
|
||||
if (ctx.HasInput("Axis")) {
|
||||
PADDLE_THROW(platform::errors::InvalidArgument(
|
||||
"Now, it doesn't support XPU with Axis."));
|
||||
}
|
||||
|
||||
output->mutable_data<T>(ctx.GetPlace());
|
||||
if (x->numel() == 0) return;
|
||||
// check index type is INT32
|
||||
const auto &index_type = index->type();
|
||||
bool index_type_match = index_type == framework::proto::VarType::INT32;
|
||||
PADDLE_ENFORCE_EQ(
|
||||
index_type_match, true,
|
||||
platform::errors::InvalidArgument(
|
||||
"XPU only support INT32, it holds %s, but desires to be %s",
|
||||
paddle::framework::DataTypeToString(index_type),
|
||||
paddle::framework::DataTypeToString(
|
||||
framework::proto::VarType::INT32)));
|
||||
|
||||
const auto index_dims = index->dims();
|
||||
if (index_dims.size() == 2) {
|
||||
PADDLE_ENFORCE_EQ(
|
||||
index_dims[1], 1,
|
||||
platform::errors::InvalidArgument(
|
||||
"The last dim of index should be 1 when it is 2D, but we get %d",
|
||||
index_dims[1]));
|
||||
} else {
|
||||
PADDLE_ENFORCE_EQ(
|
||||
index_dims.size(), 1,
|
||||
platform::errors::InvalidArgument(
|
||||
"The index should be 1D, when it is not 2D, but we get %d",
|
||||
index_dims.size()));
|
||||
}
|
||||
int slice_size = x->numel() / x->dims()[0];
|
||||
auto &dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
|
||||
int r =
|
||||
xpu::gather<T>(dev_ctx.x_context(), x->data<T>(), index->data<int>(),
|
||||
index->dims()[0], slice_size, output->data<T>());
|
||||
PADDLE_ENFORCE_EQ(
|
||||
r, xpu::Error_t::SUCCESS,
|
||||
platform::errors::External("XPU kernel error! error code=%d", r));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class GatherGradOpXPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||
PADDLE_ENFORCE_EQ(
|
||||
platform::is_xpu_place(ctx.GetPlace()), true,
|
||||
platform::errors::PreconditionNotMet("This kernel only runs on XPU."));
|
||||
|
||||
auto *index = ctx.Input<Tensor>("Index");
|
||||
auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||||
auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto &dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
|
||||
|
||||
if (ctx.HasInput("Axis")) {
|
||||
PADDLE_THROW(platform::errors::InvalidArgument(
|
||||
"Now, it doesn't support XPU with Axis."));
|
||||
}
|
||||
|
||||
dx->mutable_data<T>(ctx.GetPlace());
|
||||
const int zero = 0;
|
||||
int r_dx = xpu::memset(dev_ctx.x_context(), dx->data<T>(), zero,
|
||||
dx->numel() * sizeof(T));
|
||||
PADDLE_ENFORCE_EQ(
|
||||
r_dx, xpu::Error_t::SUCCESS,
|
||||
platform::errors::External("XPU kernel error! error code=%d", r_dx));
|
||||
|
||||
if (dout->numel() == 0) {
|
||||
return;
|
||||
}
|
||||
bool overwrite = ctx.Attr<bool>("overwrite");
|
||||
// check index type is INT32
|
||||
const auto &index_type = index->type();
|
||||
bool index_type_match = index_type == framework::proto::VarType::INT32;
|
||||
PADDLE_ENFORCE_EQ(
|
||||
index_type_match, true,
|
||||
platform::errors::InvalidArgument(
|
||||
"XPU only support INT32, it holds %s, but desires to be %s",
|
||||
paddle::framework::DataTypeToString(index_type),
|
||||
paddle::framework::DataTypeToString(
|
||||
framework::proto::VarType::INT32)));
|
||||
|
||||
const auto index_dims = index->dims();
|
||||
if (index_dims.size() == 2) {
|
||||
PADDLE_ENFORCE_EQ(
|
||||
index_dims[1], 1,
|
||||
platform::errors::InvalidArgument(
|
||||
"The last dim of index should be 1 when it is 2D, but we get %d",
|
||||
index_dims[1]));
|
||||
} else {
|
||||
PADDLE_ENFORCE_EQ(
|
||||
index_dims.size(), 1,
|
||||
platform::errors::InvalidArgument(
|
||||
"The index should be 1D, when it is not 2D, but we get %d",
|
||||
index_dims.size()));
|
||||
}
|
||||
|
||||
int index_size = index_dims[0];
|
||||
int slice_size = dout->numel() / dout->dims()[0];
|
||||
|
||||
int r = xpu::scatter<T>(dev_ctx.x_context(), dout->data<T>(),
|
||||
index->data<int>(), index_size, slice_size,
|
||||
dx->data<T>(), overwrite);
|
||||
PADDLE_ENFORCE_EQ(
|
||||
r, xpu::Error_t::SUCCESS,
|
||||
platform::errors::External("XPU kernel error! error code=%d", r));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_XPU_KERNEL(gather, ops::GatherOpXPUKernel<float>);
|
||||
REGISTER_OP_XPU_KERNEL(gather_grad, ops::GatherGradOpXPUKernel<float>);
|
||||
#endif
|
@ -0,0 +1,154 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
|
||||
|
||||
def gather_numpy(x, index, axis):
|
||||
x_transpose = np.swapaxes(x, 0, axis)
|
||||
tmp_gather = x_transpose[index, ...]
|
||||
gather = np.swapaxes(tmp_gather, 0, axis)
|
||||
return gather
|
||||
|
||||
|
||||
class TestGatherOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "gather"
|
||||
self.config()
|
||||
xnp = np.random.random(self.x_shape).astype(self.x_type)
|
||||
self.inputs = {
|
||||
'X': xnp,
|
||||
'Index': np.array(self.index).astype(self.index_type)
|
||||
}
|
||||
self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
def config(self):
|
||||
"""
|
||||
For multi-dimension input
|
||||
"""
|
||||
self.x_shape = (10, 20)
|
||||
self.x_type = "float64"
|
||||
self.index = [1, 3, 5]
|
||||
self.index_type = "int32"
|
||||
|
||||
|
||||
class TestXPUGatherOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "gather"
|
||||
self.dtype = np.float32
|
||||
self.attrs = {'use_xpu': True}
|
||||
|
||||
self.config()
|
||||
xnp = np.random.random(self.x_shape).astype(self.x_type)
|
||||
self.inputs = {
|
||||
'X': xnp,
|
||||
'Index': np.array(self.index).astype(self.index_type)
|
||||
}
|
||||
self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]}
|
||||
|
||||
def test_check_output(self):
|
||||
if self.dtype == np.float32 and paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_check_grad(self):
|
||||
if self.dtype == np.float32 and paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_grad_with_place(place, ['X'], 'Out')
|
||||
|
||||
def config(self):
|
||||
"""
|
||||
For multi-dimension input
|
||||
"""
|
||||
self.x_shape = (10, 20)
|
||||
self.x_type = self.dtype
|
||||
self.index = [1, 3, 5]
|
||||
self.index_type = "int32"
|
||||
|
||||
|
||||
class TestCase1(TestXPUGatherOp):
|
||||
def config(self):
|
||||
"""
|
||||
For one dimension input
|
||||
"""
|
||||
self.x_shape = (100)
|
||||
self.x_type = "float32"
|
||||
self.index = [1, 3, 5]
|
||||
self.index_type = "int32"
|
||||
|
||||
|
||||
class TestCase2(TestXPUGatherOp):
|
||||
def config(self):
|
||||
"""
|
||||
For int64_t index type
|
||||
"""
|
||||
self.x_shape = (100)
|
||||
self.x_type = "float32"
|
||||
self.index = [1, 3, 5]
|
||||
self.index_type = "int32"
|
||||
|
||||
|
||||
class TestCase3(TestXPUGatherOp):
|
||||
def config(self):
|
||||
"""
|
||||
For other input type
|
||||
"""
|
||||
self.x_shape = (10, 20)
|
||||
self.x_type = "float32"
|
||||
self.index = [1, 3, 5]
|
||||
self.index_type = "int32"
|
||||
|
||||
|
||||
class TestCase4(TestXPUGatherOp):
|
||||
def config(self):
|
||||
self.x_shape = (10, 20)
|
||||
self.attrs = {'use_xpu': True, 'overwrite': False}
|
||||
self.x_type = "float32"
|
||||
self.index = [1, 1]
|
||||
self.index_type = "int32"
|
||||
|
||||
|
||||
class TestCase5(TestXPUGatherOp):
|
||||
def config(self):
|
||||
self.x_shape = (10, 20)
|
||||
self.attrs = {'use_xpu': True, 'overwrite': False}
|
||||
self.x_type = "float32"
|
||||
self.index = [1, 1, 3]
|
||||
self.index_type = "int32"
|
||||
|
||||
|
||||
class TestCase6(TestXPUGatherOp):
|
||||
def config(self):
|
||||
self.x_shape = (10, 20)
|
||||
self.attrs = {'use_xpu': True, 'overwrite': True}
|
||||
self.x_type = "float32"
|
||||
self.index = [1, 3]
|
||||
self.index_type = "int32"
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue