add memory optimization transpiler (#7356)
parent
45e77154cf
commit
6ecbf08372
@ -0,0 +1,115 @@
|
||||
from collections import defaultdict
|
||||
import framework
|
||||
from framework import Program, default_main_program, Parameter, Variable
|
||||
import backward
|
||||
from backward import _rename_arg_
|
||||
|
||||
|
||||
class ControlFlowGraph(object):
|
||||
def __init__(self, Program):
|
||||
self._program = Program
|
||||
self._succesors = defaultdict(set)
|
||||
self._presucessors = defaultdict(set)
|
||||
self._uses = defaultdict(set)
|
||||
self._defs = defaultdict(set)
|
||||
self._live_in = defaultdict(set)
|
||||
self._live_out = defaultdict(set)
|
||||
|
||||
def _add_connections(self, connections):
|
||||
for node1, node2 in connections:
|
||||
self._add(node1, node2)
|
||||
|
||||
def _add(self, node1, node2):
|
||||
self._succesors[node1].add(node2)
|
||||
self._presucessors[node2].add(node1)
|
||||
|
||||
def _build_graph(self):
|
||||
program_desc = self._program.get_desc()
|
||||
block_size = program_desc.num_blocks()
|
||||
|
||||
# TODO(qijun) handle Program with if/while operators
|
||||
self.global_block = program_desc.block(0)
|
||||
self.op_size = self.global_block.op_size()
|
||||
|
||||
op_node_connections = [(i, i + 1) for i in range(self.op_size - 1)]
|
||||
self._add_connections(op_node_connections)
|
||||
|
||||
self.ops = [self.global_block.op(i) for i in range(self.op_size)]
|
||||
|
||||
for i in range(self.op_size):
|
||||
self._uses[i].update(self.ops[i].input_arg_names())
|
||||
self._defs[i].update(self.ops[i].output_arg_names())
|
||||
|
||||
def _reach_fixed_point(self, live_in, live_out):
|
||||
if len(live_in) != len(self._live_in):
|
||||
return False
|
||||
if len(live_out) != len(self._live_out):
|
||||
return False
|
||||
for i in range(self.op_size):
|
||||
if live_in[i] != self._live_in[i]:
|
||||
return False
|
||||
for i in range(self.op_size):
|
||||
if live_out[i] != self._live_out[i]:
|
||||
return False
|
||||
return True
|
||||
|
||||
def _dataflow_analyze(self):
|
||||
self._build_graph()
|
||||
live_in = defaultdict(set)
|
||||
live_out = defaultdict(set)
|
||||
while True:
|
||||
for i in range(self.op_size):
|
||||
live_in[i] = set(self._live_in[i])
|
||||
live_out[i] = set(self._live_out[i])
|
||||
self._live_in[i] = self._uses[i] | (
|
||||
self._live_out[i] - self._defs[i])
|
||||
for s in self._succesors[i]:
|
||||
self._live_out[i] |= self._live_in[s]
|
||||
|
||||
if self._reach_fixed_point(live_in, live_out):
|
||||
break
|
||||
|
||||
def _get_diff(self, a, b):
|
||||
u = a & b
|
||||
return a - u, b - u
|
||||
|
||||
def memory_optimize(self):
|
||||
self._build_graph()
|
||||
self._dataflow_analyze()
|
||||
self.pool = []
|
||||
for i in range(self.op_size):
|
||||
if self.pool:
|
||||
out_pair = [(x, self.global_block.var(str(x)).shape())
|
||||
for x in self._defs[i]]
|
||||
for x, x_shape in out_pair:
|
||||
for index, cache_pair in enumerate(self.pool):
|
||||
cache_var = cache_pair[0]
|
||||
cache_shape = cache_pair[1]
|
||||
if x_shape == cache_shape:
|
||||
print(
|
||||
"Hit Cache !!!! cache pool index is %d, var name is %s, cached var name is %s, var shape is %s "
|
||||
% (index, x, cache_var, str(cache_shape)))
|
||||
self.pool.pop(index)
|
||||
_rename_arg_(self.ops, x, cache_var, begin_idx=i)
|
||||
self._dataflow_analyze()
|
||||
break
|
||||
|
||||
in_diff, out_diff = self._get_diff(self._live_in[i],
|
||||
self._live_out[i])
|
||||
can_optimize = filter(
|
||||
lambda x: not self.global_block.var(str(x)).persistable(),
|
||||
in_diff)
|
||||
if can_optimize:
|
||||
for var_name in can_optimize:
|
||||
self.pool.append((
|
||||
var_name, self.global_block.var(str(var_name)).shape()))
|
||||
|
||||
def get_program(self):
|
||||
return self._program
|
||||
|
||||
|
||||
def memory_optimize(input_program):
|
||||
graph = ControlFlowGraph(input_program)
|
||||
graph.memory_optimize()
|
||||
result_program = graph.get_program()
|
||||
return result_program
|
@ -0,0 +1,33 @@
|
||||
from __future__ import print_function
|
||||
import unittest
|
||||
|
||||
import paddle.v2.fluid.layers as layers
|
||||
import paddle.v2.fluid.optimizer as optimizer
|
||||
from paddle.v2.fluid.framework import Program, program_guard
|
||||
from paddle.v2.fluid.memory_optimization_transpiler import memory_optimize
|
||||
|
||||
|
||||
class TestControlFlowGraph(unittest.TestCase):
|
||||
def setUp(self):
|
||||
program = Program()
|
||||
with program_guard(program, startup_program=Program()):
|
||||
x = layers.data(name='x', shape=[13], dtype='float32')
|
||||
y_predict = layers.fc(input=x, size=1, act=None)
|
||||
y = layers.data(name='y', shape=[1], dtype='float32')
|
||||
cost = layers.square_error_cost(input=y_predict, label=y)
|
||||
avg_cost = layers.mean(x=cost)
|
||||
opt = optimizer.SGD(learning_rate=0.001)
|
||||
opt = opt.minimize(avg_cost)
|
||||
|
||||
self.program = program
|
||||
|
||||
def test_control_flow_graph(self):
|
||||
print("before optimization")
|
||||
print(str(self.program))
|
||||
result_program = memory_optimize(self.program)
|
||||
print("after optimization")
|
||||
print(str(result_program))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue