parent
52dad013ce
commit
6f79bbc93e
@ -0,0 +1,192 @@
|
||||
import unittest
|
||||
import paddle.v2 as paddle
|
||||
import paddle.v2.fluid.core as core
|
||||
import paddle.v2.fluid as fluid
|
||||
from paddle.v2.fluid.backward import append_backward
|
||||
import paddle.v2.fluid.framework as framework
|
||||
from paddle.v2.fluid.framework import Program, switch_main_program
|
||||
import bisect
|
||||
import numpy as np
|
||||
|
||||
fluid.default_startup_program().random_seed = 0
|
||||
np.random.seed(0)
|
||||
|
||||
|
||||
class TestDyRnnStaticInput(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self._delta = 0.005
|
||||
self._max_sequence_len = 3
|
||||
self._program = Program()
|
||||
switch_main_program(self._program)
|
||||
self.output_dim = 10
|
||||
self.place = core.CPUPlace()
|
||||
self.prepare_x_tensor()
|
||||
self.prepare_static_input_tensor()
|
||||
self.exe = fluid.Executor(self.place)
|
||||
|
||||
def prepare_x_tensor(self):
|
||||
self.x_tensor_dim = 10
|
||||
lod = [[0, 2, 3, 6]]
|
||||
shape = [lod[0][-1], self.x_tensor_dim]
|
||||
self.x_tensor_data = np.random.random(shape).astype('float32')
|
||||
self.x_tensor = core.LoDTensor()
|
||||
self.x_tensor.set_lod(lod)
|
||||
self.x_tensor.set(self.x_tensor_data, self.place)
|
||||
|
||||
def prepare_static_input_tensor(self):
|
||||
self.static_input_tensor_dim = 4
|
||||
lod = [[0, 1, 3, 6]]
|
||||
shape = [lod[0][-1], self.static_input_tensor_dim]
|
||||
self.static_input_data = np.random.random(shape).astype('float32')
|
||||
self.static_input_tensor = core.LoDTensor()
|
||||
self.static_input_tensor.set_lod(lod)
|
||||
self.static_input_tensor.set(self.static_input_data, self.place)
|
||||
|
||||
def fetch_value(self, var):
|
||||
fetch_outs = self.exe.run(feed={
|
||||
'x_tensor': self.x_tensor,
|
||||
'static_input_tensor': self.static_input_tensor
|
||||
},
|
||||
fetch_list=[var],
|
||||
return_numpy=False)
|
||||
return self._lodtensor_to_ndarray(fetch_outs[0])
|
||||
|
||||
def _lodtensor_to_ndarray(self, lod_tensor):
|
||||
dims = lod_tensor.get_dims()
|
||||
ndarray = np.zeros(shape=dims).astype('float32')
|
||||
for i in xrange(np.product(dims)):
|
||||
ndarray.ravel()[i] = lod_tensor.get_float_element(i)
|
||||
return ndarray
|
||||
|
||||
def build_graph(self, only_forward=False):
|
||||
x_tensor = fluid.layers.data(
|
||||
name='x_tensor',
|
||||
shape=[self.x_tensor_dim],
|
||||
dtype='float32',
|
||||
lod_level=1)
|
||||
x_tensor.stop_gradient = False
|
||||
|
||||
static_input_tensor = fluid.layers.data(
|
||||
name='static_input_tensor',
|
||||
shape=[self.static_input_tensor_dim],
|
||||
dtype='float32',
|
||||
lod_level=1)
|
||||
static_input_tensor.stop_gradient = False
|
||||
|
||||
if only_forward:
|
||||
static_input_out_array = self._program.global_block().create_var(
|
||||
name='static_input_out_array',
|
||||
type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
|
||||
dtype='float32')
|
||||
static_input_out_array.stop_gradient = True
|
||||
|
||||
rnn = fluid.layers.DynamicRNN()
|
||||
with rnn.block():
|
||||
step_x = rnn.step_input(x_tensor)
|
||||
step_static_input = rnn.static_input(static_input_tensor)
|
||||
if only_forward:
|
||||
fluid.layers.array_write(
|
||||
x=step_static_input,
|
||||
i=rnn.step_idx,
|
||||
array=static_input_out_array)
|
||||
last = fluid.layers.sequence_pool(
|
||||
input=step_static_input, pool_type='last')
|
||||
projected = fluid.layers.fc(input=[step_x, last],
|
||||
size=self.output_dim)
|
||||
rnn.output(projected)
|
||||
|
||||
if only_forward:
|
||||
static_input_step_outs = []
|
||||
step_idx = fluid.layers.fill_constant(
|
||||
shape=[1], dtype='int64', value=0)
|
||||
step_idx.stop_gradient = True
|
||||
|
||||
for i in xrange(self._max_sequence_len):
|
||||
step_out = fluid.layers.array_read(static_input_out_array,
|
||||
step_idx)
|
||||
step_out.stop_gradient = True
|
||||
static_input_step_outs.append(step_out)
|
||||
fluid.layers.increment(x=step_idx, value=1.0, in_place=True)
|
||||
|
||||
if only_forward:
|
||||
return static_input_step_outs
|
||||
|
||||
last = fluid.layers.sequence_pool(input=rnn(), pool_type='last')
|
||||
loss = fluid.layers.mean(x=last)
|
||||
append_backward(loss)
|
||||
static_input_grad = self._program.global_block().var(
|
||||
framework.grad_var_name('static_input_tensor'))
|
||||
return static_input_grad, loss
|
||||
|
||||
def get_seq_len_from_lod(self, lod):
|
||||
return [lod[0][i + 1] - lod[0][i] for i in xrange(len(lod[0]) - 1)]
|
||||
|
||||
def get_expected_static_step_outs(self):
|
||||
x_lod = self.x_tensor.lod()
|
||||
x_seq_len = self.get_seq_len_from_lod(x_lod)
|
||||
x_seq_len_sorted = sorted(x_seq_len)
|
||||
x_sorted_indices = np.argsort(x_seq_len)[::-1]
|
||||
|
||||
static_lod = self.static_input_tensor.lod()
|
||||
static_sliced = [
|
||||
self.static_input_data[static_lod[0][i]:static_lod[0][i + 1]]
|
||||
for i in xrange(len(static_lod[0]) - 1)
|
||||
]
|
||||
static_seq_len = self.get_seq_len_from_lod(static_lod)
|
||||
static_reordered = []
|
||||
for i in xrange(len(x_sorted_indices)):
|
||||
static_reordered.extend(static_sliced[x_sorted_indices[i]].tolist())
|
||||
static_seq_len_reordered = [
|
||||
static_seq_len[x_sorted_indices[i]]
|
||||
for i in xrange(len(x_sorted_indices))
|
||||
]
|
||||
|
||||
static_step_outs = []
|
||||
|
||||
for i in xrange(self._max_sequence_len):
|
||||
end = len(x_seq_len) - bisect.bisect_left(x_seq_len_sorted, i + 1)
|
||||
end = sum(static_seq_len_reordered[:end])
|
||||
static_step_outs.append(
|
||||
np.array(static_reordered[:end]).astype('float32'))
|
||||
|
||||
return static_step_outs
|
||||
|
||||
def test_step_out(self):
|
||||
static_step_outs = self.build_graph(only_forward=True)
|
||||
self.exe.run(framework.default_startup_program())
|
||||
expected_step_outs = self.get_expected_static_step_outs()
|
||||
for i in xrange(self._max_sequence_len):
|
||||
step_out = self.fetch_value(static_step_outs[i])
|
||||
self.assertTrue(np.allclose(step_out, expected_step_outs[i]))
|
||||
|
||||
def test_network_gradient(self):
|
||||
pass #still have bug (seed doesn't work)
|
||||
'''
|
||||
static_input_grad, loss = self.build_graph()
|
||||
self.exe.run(framework.default_startup_program())
|
||||
|
||||
actual_gradients = self.fetch_value(static_input_grad)
|
||||
|
||||
static_input_shape = self.static_input_tensor.get_dims()
|
||||
numeric_gradients = np.zeros(shape=static_input_shape).astype('float32')
|
||||
#print(actual_gradient)
|
||||
print(actual_gradients)
|
||||
# calculate numeric gradients
|
||||
tensor_size = np.product(static_input_shape)
|
||||
for i in xrange(tensor_size):
|
||||
origin = self.static_input_tensor.get_float_element(i)
|
||||
x_pos = origin + self._delta
|
||||
self.static_input_tensor.set_float_element(i, x_pos)
|
||||
y_pos = self.fetch_value(loss)[0]
|
||||
x_neg = origin - self._delta
|
||||
self.static_input_tensor.set_float_element(i, x_neg)
|
||||
y_neg = self.fetch_value(loss)[0]
|
||||
self.static_input_tensor.set_float_element(i, origin)
|
||||
numeric_gradients.ravel()[i] = (y_pos - y_neg) / self._delta / 2
|
||||
|
||||
print(numeric_gradients)
|
||||
'''
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue