parent
5e2656449c
commit
70729ad641
@ -0,0 +1,148 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/unsqueeze_op.h"
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::OpKernelType;
|
||||
using framework::Tensor;
|
||||
|
||||
class UnsqueezeOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||
"Input(X) of UnsqueezeOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Output(Out) of UnsqueezeOp should not be null.");
|
||||
|
||||
const auto& x_dims = ctx->GetInputDim("X");
|
||||
const auto& axes = ctx->Attrs().Get<std::vector<int>>("axes");
|
||||
// Check output tensor dims (<9).
|
||||
PADDLE_ENFORCE_LE(x_dims.size() + axes.size(), 9,
|
||||
"Invalid dimnesions, dynamic dimensions must have "
|
||||
"between [1, 9] dimensions.");
|
||||
// Check the range of unsqueeze aixs.
|
||||
for (int a : axes) {
|
||||
PADDLE_ENFORCE_LT(a, static_cast<int64_t>(x_dims.size() + axes.size()),
|
||||
"The axis must be less than output tensor's rank.");
|
||||
}
|
||||
|
||||
auto out_dims = GetOutputShape(axes, x_dims);
|
||||
ctx->SetOutputDim("Out", out_dims);
|
||||
}
|
||||
|
||||
static framework::DDim GetOutputShape(const std::vector<int> unsqueeze_dims,
|
||||
const framework::DDim& in_dims) {
|
||||
int out_dims_size = in_dims.size() + unsqueeze_dims.size();
|
||||
bool should_unsqueeze[9] = {false};
|
||||
|
||||
// Determines the dimensions should be unsqueezed in output tensor after.
|
||||
for (unsigned int idx = 0; idx < unsqueeze_dims.size(); ++idx) {
|
||||
int current = unsqueeze_dims[idx] < 0
|
||||
? unsqueeze_dims[idx] + out_dims_size
|
||||
: unsqueeze_dims[idx];
|
||||
// Check current index.
|
||||
PADDLE_ENFORCE_GE(current, 0,
|
||||
"Invaild axis, negative axis is out of range.");
|
||||
should_unsqueeze[idx] = true;
|
||||
}
|
||||
|
||||
// Make output dimensions
|
||||
std::vector<int64_t> output_shape(out_dims_size, 0);
|
||||
for (int in_idx = 0, out_idx = 0; out_idx < out_dims_size; ++out_idx) {
|
||||
if (!should_unsqueeze[out_idx]) {
|
||||
output_shape[out_idx] = in_dims[in_idx++];
|
||||
} else {
|
||||
output_shape[out_idx] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
return framework::make_ddim(output_shape);
|
||||
}
|
||||
};
|
||||
|
||||
class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
void Make() override {
|
||||
AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
|
||||
AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
|
||||
AddAttr<std::vector<int>>("axes",
|
||||
"(std::vector<int>). List of positive integers,"
|
||||
" indicate the dimensions to be inserted");
|
||||
AddAttr<bool>(
|
||||
"inplace",
|
||||
"(default: false) Unsqueeze the source tensor's shape without "
|
||||
"memory copy. When Attr(inplace) is set true, the output "
|
||||
"tensor shares memory with Input(X), otherwise, a new output "
|
||||
"tensor is created, and its data are copied from Input(x).")
|
||||
.SetDefault(false);
|
||||
AddComment(R"DOC(
|
||||
Unsqueeze Operator.
|
||||
|
||||
Insert single-dimensional entries to the shape of a tensor.
|
||||
Takes one required argument axes, a list of dimensions that will be inserted.
|
||||
Dimension indices in axes are as seen in the output tensor.
|
||||
|
||||
For example:
|
||||
Given a tensor such that tensor with shape [3, 4, 5],
|
||||
then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class UnsqueezeGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||
"Input(X) of UnsqueezeGradOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
||||
"Output(Out@GRAD) of UnsqueezeGradOp should not be null.");
|
||||
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
||||
}
|
||||
|
||||
protected:
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
return framework::OpKernelType(
|
||||
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
|
||||
ctx.device_context());
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
|
||||
paddle::framework::DefaultGradOpDescMaker<true>);
|
||||
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
unsqueeze, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
|
||||
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
|
||||
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
unsqueeze_grad,
|
||||
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
|
||||
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
|
||||
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
@ -0,0 +1,30 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
|
||||
#include "paddle/fluid/operators/unsqueeze_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
squeeze, ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
squeeze_grad,
|
||||
ops::UnsqueezeGradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::UnsqueezeGradKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::UnsqueezeGradKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::UnsqueezeGradKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
@ -0,0 +1,72 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/framework/operator.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class UnsqueezeKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||
auto *out = ctx.Output<framework::LoDTensor>("Out");
|
||||
auto *in = ctx.Input<framework::LoDTensor>("X");
|
||||
|
||||
framework::DDim out_dims = out->dims();
|
||||
|
||||
bool inplace = ctx.Attr<bool>("inplace");
|
||||
out->Resize(out_dims);
|
||||
if (!inplace) {
|
||||
out->mutable_data<T>(ctx.GetPlace());
|
||||
framework::TensorCopySync(*in, ctx.GetPlace(), out);
|
||||
out->Resize(out_dims);
|
||||
} else {
|
||||
out->ShareDataWith(*in);
|
||||
out->Resize(out_dims);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class UnsqueezeGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||
auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||
auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
||||
|
||||
d_x->mutable_data<T>(ctx.GetPlace());
|
||||
bool inplace = ctx.Attr<bool>("inplace");
|
||||
|
||||
auto in_dims = d_x->dims();
|
||||
if (!inplace) {
|
||||
framework::TensorCopy(*d_out, ctx.GetPlace(), ctx.device_context(), d_x);
|
||||
ctx.device_context().Wait();
|
||||
d_x->Resize(in_dims);
|
||||
} else {
|
||||
d_x->ShareDataWith(*d_out);
|
||||
d_x->Resize(in_dims);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,98 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
# Correct: General.
|
||||
class TestSqueezeOp1(OpTest):
|
||||
def setUp(self):
|
||||
ori_shape = (3, 5)
|
||||
axes = (0, 2)
|
||||
new_shape = (1, 3, 1, 5)
|
||||
|
||||
self.op_type = "unsqueeze"
|
||||
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
|
||||
self.attrs = {"axes": axes, "inpalce": False}
|
||||
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["X"], "Out")
|
||||
|
||||
|
||||
# Correct: There is mins axis.
|
||||
class TestSqueezeOp2(OpTest):
|
||||
def setUp(self):
|
||||
ori_shape = (3, 5)
|
||||
axes = (0, -2)
|
||||
new_shape = (1, 3, 1, 5)
|
||||
|
||||
self.op_type = "unsqueeze"
|
||||
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
|
||||
self.attrs = {"axes": axes, "inpalce": False}
|
||||
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["X"], "Out")
|
||||
|
||||
|
||||
# Correct: Inplace.
|
||||
class TestUnsqueezeOpInplace1(OpTest):
|
||||
def setUp(self):
|
||||
ori_shape = (3, 5)
|
||||
axes = (0, 2)
|
||||
new_shape = (1, 3, 1, 5)
|
||||
|
||||
self.op_type = "unsqueeze"
|
||||
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
|
||||
self.attrs = {"axes": axes, "inplace": True}
|
||||
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["X"], "Out")
|
||||
|
||||
|
||||
# Correct: Inplace. There is mins axis.
|
||||
class TestUnsqueezeOpInplace2(OpTest):
|
||||
def setUp(self):
|
||||
ori_shape = (3, 5)
|
||||
axes = (0, -2)
|
||||
new_shape = (1, 3, 1, 5)
|
||||
|
||||
self.op_type = "unsqueeze"
|
||||
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
|
||||
self.attrs = {"axes": axes, "inpalce": True}
|
||||
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["X"], "Out")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue