|
|
|
|
@ -17,6 +17,15 @@ limitations under the License. */
|
|
|
|
|
#include "paddle/math/BaseMatrix.h"
|
|
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
|
/**
|
|
|
|
|
* @brief A layer for generate prior box locations and variances.
|
|
|
|
|
* - Input: Two and only two input layer are accepted. The input layer must be
|
|
|
|
|
* be a data output layer and a convolution output layer.
|
|
|
|
|
* - Output: The prior box locations and variances of the input data.
|
|
|
|
|
* Reference:
|
|
|
|
|
* Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
|
|
|
|
|
* Cheng-Yang Fu, Alexander C. Berg. SSD: Single Shot MultiBox Detector
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
class PriorBoxLayer : public Layer {
|
|
|
|
|
public:
|
|
|
|
|
@ -24,106 +33,84 @@ public:
|
|
|
|
|
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
|
|
|
|
|
void forward(PassType passType);
|
|
|
|
|
void backward(const UpdateCallback& callback) {}
|
|
|
|
|
void forwardImp(const Argument& featureMap, const Argument& imageShape);
|
|
|
|
|
int numPriors_;
|
|
|
|
|
std::vector<int> minSize_;
|
|
|
|
|
std::vector<int> maxSize_;
|
|
|
|
|
std::vector<float> aspectRatio_;
|
|
|
|
|
std::vector<float> variance_;
|
|
|
|
|
std::vector<Argument> tmpCpuInput_;
|
|
|
|
|
MatrixPtr buffer_;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
bool PriorBoxLayer::init(const LayerMap& layerMap,
|
|
|
|
|
const ParameterMap& parameterMap) {
|
|
|
|
|
Layer::init(layerMap, parameterMap);
|
|
|
|
|
auto pb_conf = config_.inputs(0).priorbox_conf();
|
|
|
|
|
std::copy(pb_conf.min_size().begin(),
|
|
|
|
|
pb_conf.min_size().end(),
|
|
|
|
|
auto pbConf = config_.inputs(0).priorbox_conf();
|
|
|
|
|
std::copy(pbConf.min_size().begin(),
|
|
|
|
|
pbConf.min_size().end(),
|
|
|
|
|
std::back_inserter(minSize_));
|
|
|
|
|
std::copy(pb_conf.max_size().begin(),
|
|
|
|
|
pb_conf.max_size().end(),
|
|
|
|
|
std::copy(pbConf.max_size().begin(),
|
|
|
|
|
pbConf.max_size().end(),
|
|
|
|
|
std::back_inserter(maxSize_));
|
|
|
|
|
std::copy(pb_conf.aspect_ratio().begin(),
|
|
|
|
|
pb_conf.aspect_ratio().end(),
|
|
|
|
|
std::copy(pbConf.aspect_ratio().begin(),
|
|
|
|
|
pbConf.aspect_ratio().end(),
|
|
|
|
|
std::back_inserter(aspectRatio_));
|
|
|
|
|
std::copy(pb_conf.variance().begin(),
|
|
|
|
|
pb_conf.variance().end(),
|
|
|
|
|
std::copy(pbConf.variance().begin(),
|
|
|
|
|
pbConf.variance().end(),
|
|
|
|
|
std::back_inserter(variance_));
|
|
|
|
|
// flip
|
|
|
|
|
int input_ratio_length = aspectRatio_.size();
|
|
|
|
|
for (int index = 0; index < input_ratio_length; index++)
|
|
|
|
|
int inputRatioLength = aspectRatio_.size();
|
|
|
|
|
for (int index = 0; index < inputRatioLength; index++)
|
|
|
|
|
aspectRatio_.push_back(1 / aspectRatio_[index]);
|
|
|
|
|
aspectRatio_.push_back(1.);
|
|
|
|
|
numPriors_ = aspectRatio_.size();
|
|
|
|
|
if (maxSize_.size() > 0) numPriors_++;
|
|
|
|
|
buffer_ = Matrix::create(1, 1, false, false);
|
|
|
|
|
if (useGpu_) {
|
|
|
|
|
tmpCpuInput_.reserve(inputLayers_.size());
|
|
|
|
|
for (size_t i = 0; i < inputLayers_.size(); i++) {
|
|
|
|
|
tmpCpuInput_.push_back(Argument());
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void PriorBoxLayer::forward(PassType passType) {
|
|
|
|
|
Layer::forward(passType);
|
|
|
|
|
if (useGpu_) {
|
|
|
|
|
for (size_t i = 0; i < inputLayers_.size(); i++) {
|
|
|
|
|
tmpCpuInput_[i].resizeAndCopyFrom(
|
|
|
|
|
getInput(i), false, HPPL_STREAM_DEFAULT);
|
|
|
|
|
hl_stream_synchronize(HPPL_STREAM_DEFAULT);
|
|
|
|
|
forwardImp(tmpCpuInput_[0], tmpCpuInput_[1]);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
forwardImp(getInput(0), getInput(1));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void PriorBoxLayer::forwardImp(const Argument& featureMap,
|
|
|
|
|
const Argument& imageShape) {
|
|
|
|
|
int layer_width = featureMap.getFrameWidth();
|
|
|
|
|
int layer_height = featureMap.getFrameHeight();
|
|
|
|
|
auto input = getInput(0);
|
|
|
|
|
int layerWidth = input.getFrameWidth();
|
|
|
|
|
int layerHeight = input.getFrameHeight();
|
|
|
|
|
|
|
|
|
|
MatrixPtr inV1 = imageShape.value;
|
|
|
|
|
int image_width = inV1->getElement(0, 0);
|
|
|
|
|
int image_height = inV1->getElement(0, 1);
|
|
|
|
|
float step_w = static_cast<float>(image_width) / layer_width;
|
|
|
|
|
float step_h = static_cast<float>(image_height) / layer_height;
|
|
|
|
|
int dim = layer_height * layer_width * numPriors_ * 4;
|
|
|
|
|
auto image = getInput(1);
|
|
|
|
|
int imageWidth = image.getFrameWidth();
|
|
|
|
|
int imageHeight = image.getFrameHeight();
|
|
|
|
|
float stepW = static_cast<float>(imageWidth) / layerWidth;
|
|
|
|
|
float stepH = static_cast<float>(imageHeight) / layerHeight;
|
|
|
|
|
int dim = layerHeight * layerWidth * numPriors_ * 4;
|
|
|
|
|
reserveOutput(1, dim * 2);
|
|
|
|
|
// use a cpu buffer to compute
|
|
|
|
|
Matrix::resizeOrCreate(buffer_, 1, dim * 2, false, false);
|
|
|
|
|
auto* tmp_ptr = buffer_->getData();
|
|
|
|
|
auto* tmpPtr = buffer_->getData();
|
|
|
|
|
|
|
|
|
|
int idx = 0;
|
|
|
|
|
for (int h = 0; h < layer_height; ++h) {
|
|
|
|
|
for (int w = 0; w < layer_width; ++w) {
|
|
|
|
|
float center_x = (w + 0.5) * step_w;
|
|
|
|
|
float center_y = (h + 0.5) * step_h;
|
|
|
|
|
int min_size = 0;
|
|
|
|
|
for (int h = 0; h < layerHeight; ++h) {
|
|
|
|
|
for (int w = 0; w < layerWidth; ++w) {
|
|
|
|
|
float centerX = (w + 0.5) * stepW;
|
|
|
|
|
float centerY = (h + 0.5) * stepH;
|
|
|
|
|
int minSize = 0;
|
|
|
|
|
for (size_t s = 0; s < minSize_.size(); s++) {
|
|
|
|
|
// first prior.
|
|
|
|
|
min_size = minSize_[s];
|
|
|
|
|
int box_width = min_size;
|
|
|
|
|
int box_height = min_size;
|
|
|
|
|
minSize = minSize_[s];
|
|
|
|
|
int boxWidth = minSize;
|
|
|
|
|
int boxHeight = minSize;
|
|
|
|
|
// xmin, ymin, xmax, ymax.
|
|
|
|
|
tmp_ptr[idx++] = (center_x - box_width / 2.) / image_width;
|
|
|
|
|
tmp_ptr[idx++] = (center_y - box_height / 2.) / image_height;
|
|
|
|
|
tmp_ptr[idx++] = (center_x + box_width / 2.) / image_width;
|
|
|
|
|
tmp_ptr[idx++] = (center_y + box_height / 2.) / image_height;
|
|
|
|
|
tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
|
|
|
|
|
tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
|
|
|
|
|
tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
|
|
|
|
|
tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
|
|
|
|
|
|
|
|
|
|
if (maxSize_.size() > 0) {
|
|
|
|
|
CHECK_EQ(minSize_.size(), maxSize_.size());
|
|
|
|
|
// second prior.
|
|
|
|
|
for (size_t s = 0; s < maxSize_.size(); s++) {
|
|
|
|
|
int max_size = maxSize_[s];
|
|
|
|
|
box_width = box_height = sqrt(min_size * max_size);
|
|
|
|
|
tmp_ptr[idx++] = (center_x - box_width / 2.) / image_width;
|
|
|
|
|
tmp_ptr[idx++] = (center_y - box_height / 2.) / image_height;
|
|
|
|
|
tmp_ptr[idx++] = (center_x + box_width / 2.) / image_width;
|
|
|
|
|
tmp_ptr[idx++] = (center_y + box_height / 2.) / image_height;
|
|
|
|
|
int maxSize = maxSize_[s];
|
|
|
|
|
boxWidth = boxHeight = sqrt(minSize * maxSize);
|
|
|
|
|
tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
|
|
|
|
|
tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
|
|
|
|
|
tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
|
|
|
|
|
tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
@ -131,27 +118,26 @@ void PriorBoxLayer::forwardImp(const Argument& featureMap,
|
|
|
|
|
for (size_t r = 0; r < aspectRatio_.size(); r++) {
|
|
|
|
|
float ar = aspectRatio_[r];
|
|
|
|
|
if (fabs(ar - 1.) < 1e-6) continue;
|
|
|
|
|
float box_width = min_size * sqrt(ar);
|
|
|
|
|
float box_height = min_size / sqrt(ar);
|
|
|
|
|
tmp_ptr[idx++] = (center_x - box_width / 2.) / image_width;
|
|
|
|
|
tmp_ptr[idx++] = (center_y - box_height / 2.) / image_height;
|
|
|
|
|
tmp_ptr[idx++] = (center_x + box_width / 2.) / image_width;
|
|
|
|
|
tmp_ptr[idx++] = (center_y + box_height / 2.) / image_height;
|
|
|
|
|
float boxWidth = minSize * sqrt(ar);
|
|
|
|
|
float boxHeight = minSize / sqrt(ar);
|
|
|
|
|
tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
|
|
|
|
|
tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
|
|
|
|
|
tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
|
|
|
|
|
tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// clip the prior's coordidate such that it is within [0, 1]
|
|
|
|
|
for (int d = 0; d < dim; ++d)
|
|
|
|
|
tmp_ptr[d] = std::min(std::max(tmp_ptr[d], (float)0.), (float)1.);
|
|
|
|
|
tmpPtr[d] = std::min(std::max(tmpPtr[d], (float)0.), (float)1.);
|
|
|
|
|
// set the variance.
|
|
|
|
|
for (int h = 0; h < layer_height; h++)
|
|
|
|
|
for (int w = 0; w < layer_width; w++)
|
|
|
|
|
for (int h = 0; h < layerHeight; h++)
|
|
|
|
|
for (int w = 0; w < layerWidth; w++)
|
|
|
|
|
for (int i = 0; i < numPriors_; i++)
|
|
|
|
|
for (int j = 0; j < 4; j++) tmp_ptr[idx++] = variance_[j];
|
|
|
|
|
for (int j = 0; j < 4; j++) tmpPtr[idx++] = variance_[j];
|
|
|
|
|
MatrixPtr outV = getOutputValue();
|
|
|
|
|
outV->copyFrom(buffer_->data_, dim * 2);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
REGISTER_LAYER(priorbox, PriorBoxLayer);
|
|
|
|
|
|
|
|
|
|
} // namespace paddle
|
|
|
|
|
|