[MKL-DNN] Reimplemented pool2d mkl-dnn to use Acquire API (#18585)

* - Added partial draft of pooling acquire

- Workspace support

- compilation fix

- Added draft of pooling backward reimplementation

- Segfault fix

- reverted 'any' for diff_dst crewation in pooling

- Lint fixes

test=develop

- lint fixes

test=develop

- Further lint fixes

test=develop

* - Fixes after review

test=develop

* - Lint fixes

test=develop

* - Even more lint fixes

test=develop
DDDivano-patch-1
Jacek Czaja 6 years ago committed by Tao Luo
parent f4ec7d54c8
commit 71d883b8ef

File diff suppressed because it is too large Load Diff

@ -122,6 +122,18 @@ class MKLDNNHandler {
return mem_p;
}
std::shared_ptr<mkldnn::memory> AcquireMemory(
const mkldnn::memory::primitive_desc& mpd, const std::string& suffix) {
auto local_key = key_ + suffix;
auto mem_p =
std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
if (mem_p == nullptr) {
mem_p = std::make_shared<mkldnn::memory>(mpd);
dev_ctx_.SetBlob(local_key, mem_p);
}
return mem_p;
}
std::shared_ptr<mkldnn::memory> AcquireMemory(
const std::shared_ptr<mkldnn::memory>& user_memory_p,
const std::shared_ptr<mkldnn::memory>& target_memory_p,
@ -424,6 +436,223 @@ class ActivationMKLDNNHandler : public MKLDNNHandler {
std::shared_ptr<mkldnn::eltwise_backward::primitive_desc> activation_bwd_pd_;
};
class PoolingMKLDNNHandler : public MKLDNNHandler {
public:
PoolingMKLDNNHandler(const std::string& pooling_type,
mkldnn::memory::data_type dt, bool is_test,
const platform::MKLDNNDeviceContext& dev_ctx,
mkldnn::engine engine, const std::string& base_key)
: platform::MKLDNNHandler(dev_ctx, engine, base_key),
dt_(dt),
pooling_type_(pooling_type),
is_test_(is_test) {}
std::shared_ptr<mkldnn::pooling_forward::primitive_desc>
AcquirePoolingPrimitiveDescriptor(
const std::vector<int>& src_tz, const std::vector<int>& dst_tz,
const mkldnn::memory::desc& src_md, const mkldnn::memory::desc& dst_md,
const std::vector<int>& ksize, const std::vector<int>& strides,
const std::vector<int>& paddings, bool ceil_mode) {
// Pooling PD has to be passed to Grad op that
// may be executed by diffrent thread, hence
// for that one we use key that does not contain TID
const std::string key_pooling_pd = key_common_ + "@pooling_pd";
fwd_pd_ = std::static_pointer_cast<mkldnn::pooling_forward::primitive_desc>(
dev_ctx_.GetBlob(key_pooling_pd));
if (fwd_pd_ == nullptr) {
static std::mutex acquire_barrier;
std::lock_guard<std::mutex> block_threads_until_finish_this_job(
acquire_barrier);
fwd_pd_ =
std::static_pointer_cast<mkldnn::pooling_forward::primitive_desc>(
dev_ctx_.GetBlob(key_pooling_pd));
if (fwd_pd_ == nullptr) {
std::vector<int> padding_left_top(paddings);
std::vector<int> padding_right_bottom(paddings);
if (ceil_mode) {
CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
padding_right_bottom);
}
auto mkldnn_forward_prop_kind =
is_test_ ? mkldnn::prop_kind::forward_inference
: mkldnn::prop_kind::forward_training;
auto pooling_desc = mkldnn::pooling_forward::desc(
mkldnn_forward_prop_kind,
pooling_type_ == "max" ? mkldnn::algorithm::pooling_max
: mkldnn::algorithm::pooling_avg,
src_md, dst_md, strides, ksize, padding_left_top,
padding_right_bottom, mkldnn::padding_kind::zero);
fwd_pd_.reset(
new mkldnn::pooling_forward::primitive_desc(pooling_desc, engine_));
dev_ctx_.SetBlob(key_pooling_pd, fwd_pd_);
}
}
return fwd_pd_;
}
std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_primitive_desc(), ptr,
"@dst_mem_p");
}
std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(void) {
mkldnn::memory::primitive_desc workspace_mpd =
pooling_type_ == "max"
? fwd_pd_->workspace_primitive_desc()
: mkldnn::memory::primitive_desc(
{{}, dt_, mkldnn::memory::format::nchw}, engine_);
// Pooling PD has to be passed to Grad op that
// may be executed by diffrent thread, hence
// for that one we use key that does not contain TID
auto local_key = key_common_ + "@workspace";
auto mem_p =
std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
if (mem_p == nullptr) {
static std::mutex acquire_barrier;
std::lock_guard<std::mutex> block_threads_until_finish_this_job(
acquire_barrier);
mem_p =
std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
if (mem_p == nullptr) {
mem_p = std::make_shared<mkldnn::memory>(workspace_mpd);
dev_ctx_.SetBlob(local_key, mem_p);
}
}
return mem_p;
}
std::shared_ptr<mkldnn::pooling_forward> AcquirePooling(
std::shared_ptr<mkldnn::memory> dst_memory,
std::shared_ptr<mkldnn::memory> src_memory) {
auto prim_key = key_ + "@pooling_p";
auto pooling_p = std::static_pointer_cast<mkldnn::pooling_forward>(
dev_ctx_.GetBlob(prim_key));
if (pooling_p == nullptr) {
if (is_test_) {
pooling_p = std::make_shared<mkldnn::pooling_forward>(
*fwd_pd_, *(src_memory), *(dst_memory));
} else {
// For training we need to create workspace
// to store indices from backward
auto workspace_memory = this->AcquireWorkspaceMemory();
pooling_p = std::make_shared<mkldnn::pooling_forward>(
*fwd_pd_, *src_memory, *dst_memory, *workspace_memory);
}
dev_ctx_.SetBlob(prim_key, pooling_p);
}
return pooling_p;
}
std::shared_ptr<mkldnn::pooling_backward::primitive_desc>
AcquirePoolingBackwardPrimitiveDescriptor(
const mkldnn::memory::desc& diff_dst_md,
const mkldnn::memory::desc& diff_src_md, const std::vector<int>& ksize,
const std::vector<int>& strides, const std::vector<int>& paddings) {
const std::string key_pooling_pd = key_common_ + "@pooling_pd";
const std::string key_pooling_bwd_pd = key_ + "@pooling_bwd_pd";
bwd_pd_ =
std::static_pointer_cast<mkldnn::pooling_backward::primitive_desc>(
dev_ctx_.GetBlob(key_pooling_bwd_pd));
if (bwd_pd_ == nullptr) {
fwd_pd_ =
std::static_pointer_cast<mkldnn::pooling_forward::primitive_desc>(
dev_ctx_.GetBlob(key_pooling_pd));
// PD from FWD op has to exist.
PADDLE_ENFORCE(fwd_pd_ != nullptr, "Pooling MKL-DNN not found in cache!");
auto backward_desc = mkldnn::pooling_backward::desc(
pooling_type_ == "max" ? mkldnn::algorithm::pooling_max
: mkldnn::algorithm::pooling_avg,
diff_src_md, diff_dst_md, strides, ksize, paddings, paddings,
mkldnn::padding_kind::zero);
bwd_pd_.reset(new mkldnn::pooling_backward::primitive_desc(
backward_desc, engine_, *fwd_pd_));
dev_ctx_.SetBlob(key_pooling_bwd_pd, bwd_pd_);
}
return bwd_pd_;
}
std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
const std::shared_ptr<mkldnn::memory> user_memory_p,
std::vector<mkldnn::primitive>& pipeline) { // NOLINT
auto diff_dst_pd = bwd_pd_->diff_dst_primitive_desc();
auto user_pd = user_memory_p->get_primitive_desc();
return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
"@diff_dst_mem_p", pipeline);
}
std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromPrimitive(void* ptr) {
return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_primitive_desc(),
ptr, "@diff_src_mem_p");
}
std::shared_ptr<mkldnn::pooling_backward> AcquirePoolingBackward(
std::shared_ptr<mkldnn::memory> diff_dst_memory,
std::shared_ptr<mkldnn::memory> workspace,
std::shared_ptr<mkldnn::memory> diff_src_memory) {
auto prim_key = key_ + "@pooling_bwd_p";
auto pooling_bwd_p = std::static_pointer_cast<mkldnn::pooling_backward>(
dev_ctx_.GetBlob(prim_key));
if (pooling_bwd_p == nullptr) {
pooling_bwd_p = std::make_shared<mkldnn::pooling_backward>(
*bwd_pd_, *diff_dst_memory, *workspace, *diff_src_memory);
dev_ctx_.SetBlob(prim_key, pooling_bwd_p);
}
return pooling_bwd_p;
}
static std::string GetHash(
const memory::dims& input_dims, const std::string& pooling_type,
const std::vector<int>& ksize, const std::vector<int>& strides,
const std::vector<int>& paddings, const memory::data_type& dt,
const memory::format& fmt, const std::string& suffix) {
std::string key;
key.reserve(platform::MKLDNNHandler::MaxKeyLength);
platform::MKLDNNHandler::AppendKeyDims(&key, input_dims);
platform::MKLDNNHandler::AppendKey(&key, pooling_type);
platform::MKLDNNHandler::AppendKeyVec(&key, ksize);
platform::MKLDNNHandler::AppendKeyVec(&key, strides);
platform::MKLDNNHandler::AppendKeyVec(&key, paddings);
platform::MKLDNNHandler::AppendKey(&key, std::to_string(dt));
platform::MKLDNNHandler::AppendKey(&key, std::to_string(fmt));
platform::MKLDNNHandler::AppendKey(&key, suffix);
return key;
}
private:
static inline int ComputeCeiledOutput(int input_size, int kernel_size,
int padding, int stride) {
return (input_size - kernel_size + 2 * padding) / stride + 1;
}
static inline void CorrectOutputSize(
const std::vector<int>& src_tz, const std::vector<int>& dst_tz,
const std::vector<int>& kernel_size, const std::vector<int>& paddings,
const std::vector<int>& strides,
std::vector<int>& right_bot_padding) { // NOLINT
for (size_t i = 0; i < right_bot_padding.size(); i++) {
int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
paddings[i], strides[i]);
if (desired_size != dst_tz[i + 2]) {
right_bot_padding[i] += strides[i];
}
}
}
private:
mkldnn::memory::data_type dt_;
std::string pooling_type_;
bool is_test_;
std::shared_ptr<mkldnn::pooling_forward::primitive_desc> fwd_pd_;
std::shared_ptr<mkldnn::pooling_backward::primitive_desc> bwd_pd_;
};
class TransposeMKLDNNHandler : public MKLDNNHandler {
public:
TransposeMKLDNNHandler(std::vector<int>& dims, // NOLINT

Loading…
Cancel
Save