Merge pull request #9214 from jczaja/prv-softmax-mkldnn-operator-PR
Softmax MKLDNN FLUID operatorhelinwang-patch-1
commit
7260e3a443
@ -0,0 +1,84 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "mkldnn.hpp"
|
||||
#include "paddle/fluid/operators/softmax_op.h"
|
||||
#include "paddle/fluid/platform/mkldnn_helper.h"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using paddle::framework::Tensor;
|
||||
using paddle::platform::MKLDNNDeviceContext;
|
||||
using paddle::platform::MKLDNNMemDesc;
|
||||
|
||||
using mkldnn::memory; // Note: paddle has also "memory" namespace
|
||||
using mkldnn::primitive;
|
||||
using mkldnn::softmax_forward;
|
||||
using mkldnn::prop_kind;
|
||||
using mkldnn::stream;
|
||||
|
||||
template <typename T>
|
||||
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
||||
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
||||
"It must use CPUPlace.");
|
||||
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
|
||||
auto mkldnn_engine = dev_ctx.GetEngine();
|
||||
const Tensor* input = ctx.Input<Tensor>("X");
|
||||
Tensor* output = ctx.Output<Tensor>("Out");
|
||||
PADDLE_ENFORCE(input->dims().size() == 2UL,
|
||||
"The input of softmax op must be a 2D matrix.");
|
||||
const T* input_data = input->data<T>();
|
||||
// allocate memory for output
|
||||
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
||||
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
|
||||
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
||||
// MKL-DNN does support softmax over selected axis. Having 2D Tensor,
|
||||
// we will make normalization after final eg. axis: 1
|
||||
PADDLE_ENFORCE(((src_tz[0] == dst_tz[0]) && (src_tz[1] == dst_tz[1])),
|
||||
"Softmax input and output dimensions should match");
|
||||
// Same memory descriptor to be used for input and output
|
||||
memory::dims softmax_tz = {src_tz[0], src_tz[1]};
|
||||
// Currently only supports NC data format
|
||||
// TODO(jczaja-intel): support more formats
|
||||
auto softmax_md =
|
||||
MKLDNNMemDesc({softmax_tz}, memory::f32, memory::format::nc);
|
||||
// Normalization is made after innermost dimension eg. C out of NC
|
||||
auto softmax_desc = softmax_forward::desc(prop_kind::forward_scoring,
|
||||
softmax_md, 1 /*dim: C*/);
|
||||
// create memory primitives
|
||||
auto softmax_src_memory =
|
||||
memory({softmax_md, mkldnn_engine}, (void*)input_data);
|
||||
auto softmax_dst_memory =
|
||||
memory({softmax_md, mkldnn_engine}, (void*)output_data);
|
||||
auto softmax_prim_desc =
|
||||
softmax_forward::primitive_desc(softmax_desc, mkldnn_engine);
|
||||
auto softmax = softmax_forward(softmax_prim_desc, softmax_src_memory,
|
||||
softmax_dst_memory);
|
||||
std::vector<primitive> pipeline{softmax};
|
||||
stream(stream::kind::eager).submit(pipeline).wait();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
|
||||
ops::SoftmaxMKLDNNKernel<float>);
|
Loading…
Reference in new issue