Make fuse_all_reduce_op_pass support mix_precision (#17652)
parent
55baeceddb
commit
7453857324
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,91 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle.fluid.core as core
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from simple_nets import init_data
|
||||
from parallel_executor_test_base import TestParallelExecutorBase
|
||||
|
||||
batch_size = 12
|
||||
img_shape = [1, 28, 28]
|
||||
|
||||
|
||||
def loss_net(hidden, label):
|
||||
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
|
||||
loss = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
avg_loss = fluid.layers.mean(loss)
|
||||
return avg_loss
|
||||
|
||||
|
||||
def conv_net(use_feed):
|
||||
img = fluid.layers.data(name='image', shape=img_shape, dtype='float16')
|
||||
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
||||
|
||||
conv_pool_1 = fluid.nets.simple_img_conv_pool(
|
||||
input=img,
|
||||
filter_size=5,
|
||||
num_filters=20,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
act="relu")
|
||||
conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
|
||||
|
||||
conv_pool_1 = fluid.layers.cast(conv_pool_1, np.float32)
|
||||
conv_pool_2 = fluid.nets.simple_img_conv_pool(
|
||||
input=conv_pool_1,
|
||||
filter_size=5,
|
||||
num_filters=50,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
act="relu")
|
||||
hidden = fluid.layers.cast(conv_pool_2, np.float32)
|
||||
return loss_net(hidden, label)
|
||||
|
||||
|
||||
def _optimizer(learning_rate=1e-6):
|
||||
optimizer = fluid.optimizer.SGD(learning_rate=learning_rate)
|
||||
return optimizer
|
||||
|
||||
|
||||
class TestResnet(TestParallelExecutorBase):
|
||||
def check_model(self, use_cuda):
|
||||
img, label = init_data(
|
||||
batch_size=batch_size, img_shape=img_shape, label_range=9)
|
||||
img = np.float16(img).view(np.uint16)
|
||||
feed_dict = {"image": img, "label": label}
|
||||
|
||||
TestParallelExecutorBase.check_network_convergence(
|
||||
conv_net,
|
||||
feed_dict=feed_dict,
|
||||
iter=10,
|
||||
use_cuda=use_cuda,
|
||||
fuse_all_reduce_ops=True,
|
||||
optimizer=_optimizer)
|
||||
|
||||
def test_model(self):
|
||||
if core.is_compiled_with_cuda():
|
||||
self.check_model(True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue