Merge pull request #6204 from sweetsky0901/my_spp_op
add spp(Spatial pyramid pooling ) opdel_some_in_makelist
commit
7456d737b2
@ -0,0 +1,99 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
Indicesou may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/spp_op.h"
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class SppOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
SppOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput(
|
||||
"X",
|
||||
"(Tensor) The input tensor of spp operator. "
|
||||
"The format of input tensor is NCHW. Where N is batch size, C is the "
|
||||
"number of channels, H and W is the height and width of feature.");
|
||||
AddOutput("Out",
|
||||
"(Tensor) The output tensor of spp operator."
|
||||
"N * M."
|
||||
"M = C * H * W");
|
||||
AddAttr<int>("pyramid_height", "(int), multi level pooling");
|
||||
AddAttr<std::string>(
|
||||
"pooling_type",
|
||||
"(string), pooling type, can be \"max\" for max-pooling "
|
||||
"and \"avg\" for average-pooling.")
|
||||
.InEnum({"max", "avg"});
|
||||
AddComment(R"DOC(
|
||||
"With spatial pyramid pooling, the input image can
|
||||
be of any sizes. This not only allows arbitrary aspect
|
||||
ratios, but also allows arbitrary scales. We can resize
|
||||
the input image to any scale (e.g., min(w, h)=180, 224,
|
||||
...) and apply the same deep network. When the
|
||||
input image is at different scales, the network (with
|
||||
the same filter sizes) will extract features at different
|
||||
scales. The scales play important roles in traditional
|
||||
methods.
|
||||
Input shape: $(N, C_{in}, H_{in}, W_{in})$
|
||||
Output shape: $(H_{out}, W_{out})$
|
||||
Where
|
||||
$$
|
||||
H_{out} = N \\
|
||||
W_{out} = (((4^pyramid_height) - 1) / (4 - 1))$ * C_{in}
|
||||
$$
|
||||
paper https://arxiv.org/pdf/1406.4729v4.pdf
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class SppOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||
"Input(X) of SppOp"
|
||||
"should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Output(Out) of SppOp should not be null.");
|
||||
auto in_x_dims = ctx->GetInputDim("X");
|
||||
int pyramid_height = ctx->Attrs().Get<int>("pyramid_height");
|
||||
PADDLE_ENFORCE(in_x_dims.size() == 4,
|
||||
"Spping intput must be of 4-dimensional.");
|
||||
int outlen = ((std::pow(4, pyramid_height) - 1) / (4 - 1)) * in_x_dims[1];
|
||||
std::vector<int64_t> output_shape({in_x_dims[0], outlen});
|
||||
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
|
||||
}
|
||||
};
|
||||
|
||||
class SppOpGrad : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
||||
"Input(X@GRAD) should not be null.");
|
||||
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP(spp, ops::SppOp, ops::SppOpMaker, spp_grad, ops::SppOpGrad);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
spp, ops::SppKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::SppKernel<paddle::platform::CPUDeviceContext, double>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
spp_grad, ops::SppGradKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::SppGradKernel<paddle::platform::CPUDeviceContext, double>);
|
@ -0,0 +1,23 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
Indicesou may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/spp_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
spp, ops::SppKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::SppKernel<paddle::platform::CUDADeviceContext, double>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
spp_grad, ops::SppGradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::SppGradKernel<paddle::platform::CUDADeviceContext, double>);
|
@ -0,0 +1,161 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
Indicesou may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/operators/math/math_function.h"
|
||||
#include "paddle/operators/math/pooling.h"
|
||||
#include "paddle/operators/strided_memcpy.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
template <typename DeviceContext, typename T>
|
||||
class SppKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
const framework::Tensor* in_x = context.Input<framework::Tensor>("X");
|
||||
auto* out = context.Output<framework::Tensor>("Out");
|
||||
int pyramid_height = context.template Attr<int>("pyramid_height");
|
||||
std::string pooling_type =
|
||||
context.template Attr<std::string>("pooling_type");
|
||||
out->mutable_data<T>(context.GetPlace());
|
||||
auto out_stride = framework::stride(out->dims());
|
||||
int input_h = in_x->dims()[2];
|
||||
int input_w = in_x->dims()[3];
|
||||
size_t output_offset = 0;
|
||||
for (int p = 0; p < pyramid_height; ++p) {
|
||||
int bins = std::pow(2, p);
|
||||
int kernel_size_h = std::ceil(input_h / static_cast<double>(bins));
|
||||
int kernel_size_w = std::ceil(input_w / static_cast<double>(bins));
|
||||
int padding_h = (kernel_size_h * bins - input_h + 1) / 2;
|
||||
int padding_w = (kernel_size_w * bins - input_w + 1) / 2;
|
||||
std::vector<int> kernel_size({kernel_size_h, kernel_size_w});
|
||||
std::vector<int> strides({kernel_size_h, kernel_size_w});
|
||||
std::vector<int> paddings({padding_h, padding_w});
|
||||
// pooling output shape
|
||||
framework::Tensor out_level;
|
||||
std::vector<int64_t> output_shape_vec(
|
||||
{in_x->dims()[0], in_x->dims()[1], bins, bins});
|
||||
framework::DDim output_shape(framework::make_ddim(output_shape_vec));
|
||||
out_level.mutable_data<T>(output_shape, context.GetPlace());
|
||||
// pooling
|
||||
if (pooling_type == "max") {
|
||||
math::Pool2dFunctor<DeviceContext, math::MaxPool<T>, T> pool_forward;
|
||||
math::MaxPool<T> max_process;
|
||||
pool_forward(context.template device_context<DeviceContext>(), *in_x,
|
||||
kernel_size, strides, paddings, max_process, &out_level);
|
||||
} else if (pooling_type == "avg") {
|
||||
math::Pool2dFunctor<DeviceContext, math::AvgPool<T>, T> pool_forward;
|
||||
math::AvgPool<T> avg_process;
|
||||
pool_forward(context.template device_context<DeviceContext>(), *in_x,
|
||||
kernel_size, strides, paddings, avg_process, &out_level);
|
||||
}
|
||||
// flatten pooling output shape
|
||||
int output_flatten_w = in_x->dims()[1] * bins * bins;
|
||||
std::vector<int64_t> output_flatten_shape_vec(
|
||||
{in_x->dims()[0], output_flatten_w});
|
||||
framework::DDim output_flatten_shape(
|
||||
framework::make_ddim(output_flatten_shape_vec));
|
||||
out_level.Resize(output_flatten_shape);
|
||||
// concat
|
||||
auto out_level_stride = framework::stride(out_level.dims());
|
||||
StridedMemcpy<T>(context.template device_context<DeviceContext>(),
|
||||
out_level.data<T>(), out_level_stride, out_level.dims(),
|
||||
out_stride, out->data<T>() + output_offset);
|
||||
output_offset += out_level.dims()[1] * out_level_stride[1];
|
||||
}
|
||||
}
|
||||
};
|
||||
template <typename DeviceContext, typename T>
|
||||
class SppGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
const framework::Tensor* in_x = context.Input<framework::Tensor>("X");
|
||||
const framework::Tensor* out = context.Input<framework::Tensor>("Out");
|
||||
const framework::Tensor* out_grad =
|
||||
context.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||
framework::Tensor* in_x_grad =
|
||||
context.Output<framework::Tensor>(framework::GradVarName("X"));
|
||||
int pyramid_height = context.template Attr<int>("pyramid_height");
|
||||
std::string pooling_type =
|
||||
context.template Attr<std::string>("pooling_type");
|
||||
auto& device_ctx = context.template device_context<DeviceContext>();
|
||||
math::SetConstant<DeviceContext, T> zero;
|
||||
in_x_grad->mutable_data<T>(context.GetPlace());
|
||||
zero(device_ctx, in_x_grad, static_cast<T>(0));
|
||||
auto out_stride = framework::stride(out->dims());
|
||||
int input_h = in_x->dims()[2];
|
||||
int input_w = in_x->dims()[3];
|
||||
size_t out_offset = 0;
|
||||
for (int p = 0; p < pyramid_height; ++p) {
|
||||
int bins = std::pow(2, p);
|
||||
int kernel_size_h = std::ceil(input_h / static_cast<double>(bins));
|
||||
int kernel_size_w = std::ceil(input_w / static_cast<double>(bins));
|
||||
int padding_h = (kernel_size_h * bins - input_h + 1) / 2;
|
||||
int padding_w = (kernel_size_w * bins - input_w + 1) / 2;
|
||||
std::vector<int> kernel_size({kernel_size_h, kernel_size_w});
|
||||
std::vector<int> strides({kernel_size_h, kernel_size_w});
|
||||
std::vector<int> paddings({padding_h, padding_w});
|
||||
// split out and outgrad ... to flatten
|
||||
framework::Tensor out_level;
|
||||
framework::Tensor outgrad_level;
|
||||
int out_flatten_w = in_x->dims()[1] * bins * bins;
|
||||
std::vector<int64_t> out_flatten_shape_vec(
|
||||
{in_x->dims()[0], out_flatten_w});
|
||||
framework::DDim out_flatten_shape(
|
||||
framework::make_ddim(out_flatten_shape_vec));
|
||||
out_level.mutable_data<T>(out_flatten_shape, context.GetPlace());
|
||||
outgrad_level.mutable_data<T>(out_flatten_shape, context.GetPlace());
|
||||
auto flatten_stride = framework::stride(out_level.dims());
|
||||
// memcpy
|
||||
StridedMemcpy<T>(context.template device_context<DeviceContext>(),
|
||||
out->data<T>() + out_offset, out_stride,
|
||||
out_level.dims(), flatten_stride, out_level.data<T>());
|
||||
|
||||
StridedMemcpy<T>(context.template device_context<DeviceContext>(),
|
||||
out_grad->data<T>() + out_offset, out_stride,
|
||||
outgrad_level.dims(), flatten_stride,
|
||||
outgrad_level.data<T>());
|
||||
out_offset += out_level.dims()[1] * out_stride[1];
|
||||
// flatten backward to nchw
|
||||
|
||||
std::vector<int64_t> out_shape_vec({in_x->dims()[0], in_x->dims()[1]});
|
||||
out_shape_vec.push_back(
|
||||
(input_h - kernel_size_h + 2 * padding_h) / kernel_size_h + 1);
|
||||
out_shape_vec.push_back(
|
||||
(input_w - kernel_size_w + 2 * padding_w) / kernel_size_w + 1);
|
||||
framework::DDim out_shape(framework::make_ddim(out_shape_vec));
|
||||
out_level.ShareDataWith(out_level);
|
||||
out_level.Resize(out_shape);
|
||||
outgrad_level.ShareDataWith(outgrad_level);
|
||||
outgrad_level.Resize(out_shape);
|
||||
// pooling backward
|
||||
if (pooling_type == "max") {
|
||||
math::MaxPool2dGradFunctor<DeviceContext, T> pool2d_backward;
|
||||
pool2d_backward(context.template device_context<DeviceContext>(), *in_x,
|
||||
*&out_level, *&outgrad_level, kernel_size, strides,
|
||||
paddings, in_x_grad);
|
||||
} else if (pooling_type == "avg") {
|
||||
math::Pool2dGradFunctor<DeviceContext, math::AvgPoolGrad<T>, T>
|
||||
pool_backward;
|
||||
math::AvgPoolGrad<T> avg_process;
|
||||
pool_backward(context.template device_context<DeviceContext>(), *in_x,
|
||||
*&out_level, *&outgrad_level, kernel_size, strides,
|
||||
paddings, avg_process, in_x_grad);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,68 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
from test_pool2d_op import max_pool2D_forward_naive
|
||||
from test_pool2d_op import avg_pool2D_forward_naive
|
||||
|
||||
|
||||
class TestSppOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "spp"
|
||||
self.init_test_case()
|
||||
input = np.random.random(self.shape).astype("float32")
|
||||
nsize, csize, hsize, wsize = input.shape
|
||||
out_level_flatten = []
|
||||
for i in xrange(self.pyramid_height):
|
||||
bins = np.power(2, i)
|
||||
kernel_size = [0, 0]
|
||||
padding = [0, 0]
|
||||
kernel_size[0] = np.ceil(hsize /
|
||||
bins.astype("double")).astype("int32")
|
||||
padding[0] = (
|
||||
(kernel_size[0] * bins - hsize + 1) / 2).astype("int32")
|
||||
|
||||
kernel_size[1] = np.ceil(wsize /
|
||||
bins.astype("double")).astype("int32")
|
||||
padding[1] = (
|
||||
(kernel_size[1] * bins - wsize + 1) / 2).astype("int32")
|
||||
out_level = self.pool2D_forward_naive(input, kernel_size,
|
||||
kernel_size, padding)
|
||||
out_level_flatten.append(
|
||||
out_level.reshape(nsize, bins * bins * csize))
|
||||
if i == 0:
|
||||
output = out_level_flatten[i]
|
||||
else:
|
||||
output = np.concatenate((output, out_level_flatten[i]), 1)
|
||||
# output = np.concatenate(out_level_flatten.tolist(), 0);
|
||||
self.inputs = {'X': input.astype('float32'), }
|
||||
self.attrs = {
|
||||
'pyramid_height': self.pyramid_height,
|
||||
'pooling_type': self.pool_type
|
||||
}
|
||||
|
||||
self.outputs = {'Out': output.astype('float32')}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
if self.pool_type != "avg":
|
||||
self.check_grad(['X'], 'Out', max_relative_error=0.05)
|
||||
|
||||
def init_test_case(self):
|
||||
self.shape = [3, 2, 4, 4]
|
||||
self.pyramid_height = 3
|
||||
self.pool2D_forward_naive = max_pool2D_forward_naive
|
||||
self.pool_type = "max"
|
||||
|
||||
|
||||
class TestCase2(TestSppOp):
|
||||
def init_test_case(self):
|
||||
self.shape = [3, 2, 4, 4]
|
||||
self.pyramid_height = 3
|
||||
self.pool2D_forward_naive = avg_pool2D_forward_naive
|
||||
self.pool_type = "avg"
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue