Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into add_dist_unit_test
commit
745aacfc38
@ -0,0 +1,111 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
namespace details {
|
||||
|
||||
Tensor *GetTensorFromVar(Variable *in_var) {
|
||||
if (in_var->IsType<LoDTensor>()) {
|
||||
return in_var->GetMutable<LoDTensor>();
|
||||
} else if (in_var->IsType<SelectedRows>()) {
|
||||
return in_var->GetMutable<SelectedRows>()->mutable_value();
|
||||
} else {
|
||||
PADDLE_THROW("Var should be LoDTensor or SelectedRows");
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
BroadcastOpHandle::BroadcastOpHandle(const std::vector<Scope *> &local_scopes,
|
||||
const std::vector<platform::Place> &places)
|
||||
: local_scopes_(local_scopes), places_(places) {}
|
||||
|
||||
void BroadcastOpHandle::RunImpl() {
|
||||
// the input may have dummy var.
|
||||
std::vector<VarHandle *> in_var_handle;
|
||||
for (auto *in : inputs_) {
|
||||
auto *out_handle = dynamic_cast<VarHandle *>(in);
|
||||
if (out_handle) {
|
||||
in_var_handle.push_back(out_handle);
|
||||
}
|
||||
}
|
||||
PADDLE_ENFORCE_EQ(in_var_handle.size(), 1,
|
||||
"The number of input should be one.");
|
||||
|
||||
// the output may have dummy var.
|
||||
std::vector<VarHandle *> out_var_handles;
|
||||
for (auto *out : outputs_) {
|
||||
auto *out_handle = dynamic_cast<VarHandle *>(out);
|
||||
if (out_handle) {
|
||||
out_var_handles.push_back(out_handle);
|
||||
}
|
||||
}
|
||||
|
||||
PADDLE_ENFORCE_EQ(
|
||||
out_var_handles.size(), places_.size(),
|
||||
"The number of output should equal to the number of places.");
|
||||
|
||||
// Wait input done, this Wait is asynchronous operation
|
||||
auto &in_place = in_var_handle[0]->place_;
|
||||
if (in_var_handle[0]->generated_op_) {
|
||||
for (auto *out : out_var_handles) {
|
||||
auto &out_p = out->place_;
|
||||
in_var_handle[0]->generated_op_->Wait(dev_ctxes_[out_p]);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
auto in_scope_idx = in_var_handle[0]->scope_idx_;
|
||||
auto in_var =
|
||||
local_scopes_.at(in_scope_idx)->FindVar(in_var_handle[0]->name_);
|
||||
Tensor *in_tensor = GetTensorFromVar(in_var);
|
||||
|
||||
for (auto *out : out_var_handles) {
|
||||
auto &out_p = out->place_;
|
||||
auto out_var = local_scopes_.at(out->scope_idx_)->FindVar(out->name_);
|
||||
|
||||
PADDLE_ENFORCE_EQ(out_p.which(), in_place.which(),
|
||||
"Places must be all on CPU or all on CUDA.");
|
||||
|
||||
if (in_var->IsType<framework::SelectedRows>()) {
|
||||
auto &in_sr = in_var->Get<framework::SelectedRows>();
|
||||
auto out_sr = out_var->GetMutable<framework::SelectedRows>();
|
||||
if (&in_sr == out_sr) continue;
|
||||
out_sr->set_height(in_sr.height());
|
||||
out_sr->set_rows(in_sr.rows());
|
||||
out_sr->mutable_value()->Resize(in_sr.value().dims());
|
||||
out_sr->mutable_value()->mutable_data(out_p, in_sr.value().type());
|
||||
} else if (in_var->IsType<framework::LoDTensor>()) {
|
||||
auto in_lod = in_var->Get<framework::LoDTensor>();
|
||||
auto out_lod = out_var->GetMutable<framework::LoDTensor>();
|
||||
if (&in_lod == out_lod) continue;
|
||||
out_lod->set_lod(in_lod.lod());
|
||||
out_lod->Resize(in_lod.dims());
|
||||
out_lod->mutable_data(out_p, in_lod.type());
|
||||
} else {
|
||||
PADDLE_THROW("Var should be LoDTensor or SelectedRows.");
|
||||
}
|
||||
|
||||
Tensor *out_tensor = GetTensorFromVar(out_var);
|
||||
paddle::framework::TensorCopy(*in_tensor, out_p, *(dev_ctxes_[in_place]),
|
||||
out_tensor);
|
||||
}
|
||||
}
|
||||
|
||||
std::string BroadcastOpHandle::Name() const { return "broadcast"; }
|
||||
} // namespace details
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
@ -0,0 +1,48 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "paddle/fluid/framework/details/op_handle_base.h"
|
||||
#include "paddle/fluid/framework/lod_tensor.h"
|
||||
#include "paddle/fluid/framework/scope.h"
|
||||
#include "paddle/fluid/framework/selected_rows.h"
|
||||
#include "paddle/fluid/platform/device_context.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
namespace details {
|
||||
|
||||
struct BroadcastOpHandle : public OpHandleBase {
|
||||
const std::vector<Scope *> &local_scopes_;
|
||||
const std::vector<platform::Place> &places_;
|
||||
|
||||
BroadcastOpHandle(const std::vector<Scope *> &local_scopes,
|
||||
const std::vector<platform::Place> &places);
|
||||
|
||||
std::string Name() const override;
|
||||
|
||||
bool IsMultiDeviceTransfer() override { return false; };
|
||||
|
||||
protected:
|
||||
void RunImpl() override;
|
||||
};
|
||||
|
||||
} // namespace details
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
@ -0,0 +1,231 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
#include "paddle/fluid/platform/device_context.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
namespace details {
|
||||
|
||||
namespace f = paddle::framework;
|
||||
namespace p = paddle::platform;
|
||||
|
||||
// test data amount
|
||||
const f::DDim kDims = {20, 20};
|
||||
|
||||
struct TestBroadcastOpHandle {
|
||||
std::vector<std::unique_ptr<p::DeviceContext>> ctxs_;
|
||||
std::vector<Scope*> local_scopes_;
|
||||
Scope g_scope_;
|
||||
std::unique_ptr<OpHandleBase> op_handle_;
|
||||
std::vector<std::unique_ptr<VarHandleBase>> vars_;
|
||||
std::vector<p::Place> gpu_list_;
|
||||
|
||||
void WaitAll() {
|
||||
for (size_t j = 0; j < ctxs_.size(); ++j) {
|
||||
ctxs_[j]->Wait();
|
||||
}
|
||||
}
|
||||
|
||||
void InitCtxOnGpu(bool use_gpu) {
|
||||
if (use_gpu) {
|
||||
#ifdef PADDLE_WITH_CUDA
|
||||
int count = p::GetCUDADeviceCount();
|
||||
if (count <= 1) {
|
||||
LOG(WARNING) << "Cannot test multi-gpu Broadcast, because the CUDA "
|
||||
"device count is "
|
||||
<< count;
|
||||
exit(0);
|
||||
}
|
||||
for (int i = 0; i < count; ++i) {
|
||||
auto p = p::CUDAPlace(i);
|
||||
gpu_list_.push_back(p);
|
||||
ctxs_.emplace_back(new p::CUDADeviceContext(p));
|
||||
}
|
||||
#else
|
||||
PADDLE_THROW("CUDA is not support.");
|
||||
#endif
|
||||
} else {
|
||||
int count = 8;
|
||||
for (int i = 0; i < count; ++i) {
|
||||
auto p = p::CPUPlace();
|
||||
gpu_list_.push_back(p);
|
||||
ctxs_.emplace_back(new p::CPUDeviceContext(p));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void InitBroadcastOp(size_t input_scope_idx) {
|
||||
for (size_t j = 0; j < gpu_list_.size(); ++j) {
|
||||
local_scopes_.push_back(&(g_scope_.NewScope()));
|
||||
local_scopes_[j]->Var("out");
|
||||
}
|
||||
local_scopes_[input_scope_idx]->Var("input");
|
||||
|
||||
op_handle_.reset(new BroadcastOpHandle(local_scopes_, gpu_list_));
|
||||
|
||||
vars_.emplace_back(new VarHandle());
|
||||
VarHandle* in_var_handle = static_cast<VarHandle*>(vars_.back().get());
|
||||
in_var_handle->place_ = gpu_list_[input_scope_idx];
|
||||
in_var_handle->name_ = "input";
|
||||
in_var_handle->version_ = 1;
|
||||
in_var_handle->scope_idx_ = input_scope_idx;
|
||||
in_var_handle->generated_op_ = nullptr;
|
||||
op_handle_->AddInput(in_var_handle);
|
||||
|
||||
// add dummy var
|
||||
vars_.emplace_back(new DummyVarHandle());
|
||||
DummyVarHandle* dummy_var_handle =
|
||||
static_cast<DummyVarHandle*>(vars_.back().get());
|
||||
dummy_var_handle->generated_op_ = nullptr;
|
||||
op_handle_->AddInput(dummy_var_handle);
|
||||
|
||||
for (size_t j = 0; j < gpu_list_.size(); ++j) {
|
||||
op_handle_->dev_ctxes_[gpu_list_[j]] = ctxs_[j].get();
|
||||
vars_.emplace_back(new VarHandle());
|
||||
VarHandle* out_var_handle = static_cast<VarHandle*>(vars_.back().get());
|
||||
out_var_handle->place_ = gpu_list_[j];
|
||||
out_var_handle->name_ = "out";
|
||||
out_var_handle->version_ = 2;
|
||||
out_var_handle->scope_idx_ = j;
|
||||
op_handle_->AddOutput(out_var_handle);
|
||||
}
|
||||
|
||||
// add dummy var
|
||||
vars_.emplace_back(new DummyVarHandle());
|
||||
DummyVarHandle* out_dummy_var_handle =
|
||||
static_cast<DummyVarHandle*>(vars_.back().get());
|
||||
out_dummy_var_handle->generated_op_ = nullptr;
|
||||
op_handle_->AddOutput(out_dummy_var_handle);
|
||||
}
|
||||
|
||||
void TestBroadcastLodTensor(size_t input_scope_idx) {
|
||||
auto in_var = local_scopes_[input_scope_idx]->Var("input");
|
||||
auto in_lod_tensor = in_var->GetMutable<f::LoDTensor>();
|
||||
in_lod_tensor->mutable_data<float>(kDims, gpu_list_[input_scope_idx]);
|
||||
|
||||
std::vector<float> send_vector(static_cast<size_t>(f::product(kDims)));
|
||||
for (size_t k = 0; k < send_vector.size(); ++k) {
|
||||
send_vector[k] = k;
|
||||
}
|
||||
f::LoD lod{{0, 10, 20}};
|
||||
paddle::framework::TensorFromVector<float>(
|
||||
send_vector, *(ctxs_[input_scope_idx]), in_lod_tensor);
|
||||
in_lod_tensor->set_lod(lod);
|
||||
|
||||
op_handle_->Run(false);
|
||||
|
||||
WaitAll();
|
||||
|
||||
p::CPUPlace cpu_place;
|
||||
for (size_t j = 0; j < gpu_list_.size(); ++j) {
|
||||
auto out_var = local_scopes_[j]->Var("out");
|
||||
auto out_tensor = out_var->Get<f::LoDTensor>();
|
||||
PADDLE_ENFORCE_EQ(out_tensor.lod(), lod, "lod is not equal.");
|
||||
|
||||
f::Tensor result_tensor;
|
||||
f::TensorCopy(out_tensor, cpu_place, *(ctxs_[j]), &result_tensor);
|
||||
float* ct = result_tensor.mutable_data<float>(cpu_place);
|
||||
|
||||
for (int64_t i = 0; i < f::product(kDims); ++i) {
|
||||
ASSERT_NEAR(ct[i], send_vector[i], 1e-5);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void TestBroadcastSelectedRows(size_t input_scope_idx) {
|
||||
auto in_var = local_scopes_[input_scope_idx]->Var("input");
|
||||
auto in_selected_rows = in_var->GetMutable<f::SelectedRows>();
|
||||
auto value = in_selected_rows->mutable_value();
|
||||
value->mutable_data<float>(kDims, gpu_list_[input_scope_idx]);
|
||||
int height = static_cast<int>(kDims[0]) * 2;
|
||||
std::vector<int64_t> rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1,
|
||||
2, 4, 6, 3, 1, 1, 1, 1, 3, 7};
|
||||
in_selected_rows->set_height(height);
|
||||
in_selected_rows->set_rows(rows);
|
||||
|
||||
std::vector<float> send_vector(static_cast<size_t>(f::product(kDims)));
|
||||
for (size_t k = 0; k < send_vector.size(); ++k) {
|
||||
send_vector[k] = k;
|
||||
}
|
||||
paddle::framework::TensorFromVector<float>(
|
||||
send_vector, *(ctxs_[input_scope_idx]), value);
|
||||
|
||||
op_handle_->Run(false);
|
||||
|
||||
WaitAll();
|
||||
|
||||
p::CPUPlace cpu_place;
|
||||
for (size_t j = 0; j < gpu_list_.size(); ++j) {
|
||||
auto out_var = local_scopes_[j]->Var("out");
|
||||
auto& out_select_rows = out_var->Get<f::SelectedRows>();
|
||||
auto rt = out_select_rows.value();
|
||||
|
||||
PADDLE_ENFORCE_EQ(out_select_rows.height(), height,
|
||||
"height is not equal.");
|
||||
for (size_t k = 0; k < out_select_rows.rows().size(); ++k) {
|
||||
PADDLE_ENFORCE_EQ(out_select_rows.rows()[k], rows[k]);
|
||||
}
|
||||
|
||||
f::Tensor result_tensor;
|
||||
f::TensorCopy(rt, cpu_place, *(ctxs_[j]), &result_tensor);
|
||||
float* ct = result_tensor.data<float>();
|
||||
|
||||
for (int64_t i = 0; i < f::product(kDims); ++i) {
|
||||
ASSERT_NEAR(ct[i], send_vector[i], 1e-5);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST(BroadcastTester, TestCPUBroadcastTestLodTensor) {
|
||||
TestBroadcastOpHandle test_op;
|
||||
size_t input_scope_idx = 0;
|
||||
test_op.InitCtxOnGpu(false);
|
||||
test_op.InitBroadcastOp(input_scope_idx);
|
||||
test_op.TestBroadcastLodTensor(input_scope_idx);
|
||||
}
|
||||
|
||||
TEST(BroadcastTester, TestCPUBroadcastTestSelectedRows) {
|
||||
TestBroadcastOpHandle test_op;
|
||||
size_t input_scope_idx = 0;
|
||||
test_op.InitCtxOnGpu(false);
|
||||
test_op.InitBroadcastOp(input_scope_idx);
|
||||
test_op.TestBroadcastSelectedRows(input_scope_idx);
|
||||
}
|
||||
|
||||
#ifdef PADDLE_WITH_CUDA
|
||||
TEST(BroadcastTester, TestGPUBroadcastTestLodTensor) {
|
||||
TestBroadcastOpHandle test_op;
|
||||
size_t input_scope_idx = 0;
|
||||
test_op.InitCtxOnGpu(true);
|
||||
test_op.InitBroadcastOp(input_scope_idx);
|
||||
test_op.TestBroadcastLodTensor(input_scope_idx);
|
||||
}
|
||||
|
||||
TEST(BroadcastTester, TestGPUBroadcastTestSelectedRows) {
|
||||
TestBroadcastOpHandle test_op;
|
||||
size_t input_scope_idx = 0;
|
||||
test_op.InitCtxOnGpu(true);
|
||||
test_op.InitBroadcastOp(input_scope_idx);
|
||||
test_op.TestBroadcastSelectedRows(input_scope_idx);
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace details
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
@ -0,0 +1,126 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/framework/details/gather_op_handle.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
namespace details {
|
||||
|
||||
GatherOpHandle::GatherOpHandle(const std::vector<Scope *> &local_scopes,
|
||||
const std::vector<platform::Place> &places)
|
||||
: local_scopes_(local_scopes), places_(places) {}
|
||||
|
||||
void GatherOpHandle::RunImpl() {
|
||||
// the input may have dummy var.
|
||||
std::vector<VarHandle *> in_var_handles;
|
||||
for (auto *in : inputs_) {
|
||||
auto *in_handle = dynamic_cast<VarHandle *>(in);
|
||||
if (in_handle) {
|
||||
in_var_handles.push_back(in_handle);
|
||||
}
|
||||
}
|
||||
PADDLE_ENFORCE_EQ(
|
||||
in_var_handles.size(), places_.size(),
|
||||
"The number of output should equal to the number of places.");
|
||||
|
||||
// the output may have dummy var.
|
||||
std::vector<VarHandle *> out_var_handles;
|
||||
for (auto *out : outputs_) {
|
||||
auto *out_handle = dynamic_cast<VarHandle *>(out);
|
||||
if (out_handle) {
|
||||
out_var_handles.push_back(out_handle);
|
||||
}
|
||||
}
|
||||
PADDLE_ENFORCE_EQ(out_var_handles.size(), 1,
|
||||
"The number of output should be one.");
|
||||
|
||||
auto in_0_handle = static_cast<VarHandle *>(in_var_handles[0]);
|
||||
auto pre_in_var =
|
||||
local_scopes_[in_0_handle->scope_idx_]->FindVar(in_0_handle->name_);
|
||||
auto pre_place = in_0_handle->place_;
|
||||
|
||||
PADDLE_ENFORCE(pre_in_var->IsType<framework::SelectedRows>(),
|
||||
"Currently, gather_op only can gather SelectedRows.");
|
||||
|
||||
PADDLE_ENFORCE_EQ(out_var_handles[0]->place_.which(), pre_place.which(),
|
||||
"The place of input and output should be the same.");
|
||||
|
||||
// Wait input done, this Wait is asynchronous operation
|
||||
for (auto *in : in_var_handles) {
|
||||
if (in->generated_op_) {
|
||||
in->generated_op_->Wait(dev_ctxes_[in->place_]);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<int64_t> out_rows;
|
||||
std::vector<Tensor> in_tensors;
|
||||
std::vector<platform::Place> in_places;
|
||||
|
||||
auto &pre_in = pre_in_var->Get<framework::SelectedRows>();
|
||||
// gather the inputs
|
||||
for (auto *in : in_var_handles) {
|
||||
auto in_handle = static_cast<VarHandle *>(in);
|
||||
auto in_p = in_handle->place_;
|
||||
in_places.push_back(in_p);
|
||||
PADDLE_ENFORCE_EQ(in_p.which(), pre_place.which(),
|
||||
"Places must be all on CPU or all on CUDA.");
|
||||
auto in_var =
|
||||
local_scopes_.at(in_handle->scope_idx_)->FindVar(in_handle->name_);
|
||||
auto &in_sr = in_var->Get<framework::SelectedRows>();
|
||||
|
||||
PADDLE_ENFORCE_EQ(in_sr.value().type(), pre_in.value().type(),
|
||||
"The type of input is not consistent.");
|
||||
PADDLE_ENFORCE_EQ(pre_in.height(), in_sr.height(),
|
||||
"The height of inputs is not consistent.");
|
||||
PADDLE_ENFORCE_EQ(pre_in.GetCompleteDims(), in_sr.GetCompleteDims(), ,
|
||||
"The dims of inputs is not consistent.");
|
||||
|
||||
auto in_sr_rows = in_sr.rows();
|
||||
out_rows.insert(out_rows.end(), in_sr_rows.begin(), in_sr_rows.end());
|
||||
|
||||
in_tensors.emplace_back(in_sr.value());
|
||||
}
|
||||
|
||||
// write the output
|
||||
auto &out_place = out_var_handles[0]->place_;
|
||||
auto out_scope_idx = out_var_handles[0]->scope_idx_;
|
||||
auto out_var =
|
||||
local_scopes_[out_scope_idx]->FindVar(out_var_handles[0]->name_);
|
||||
|
||||
auto out = out_var->GetMutable<framework::SelectedRows>();
|
||||
out->set_height(pre_in.height());
|
||||
out->set_rows(out_rows);
|
||||
size_t rows = out_rows.size();
|
||||
DDim out_dim = pre_in.GetCompleteDims();
|
||||
out_dim[0] = static_cast<int64_t>(rows);
|
||||
out->mutable_value()->Resize(out_dim);
|
||||
out->mutable_value()->mutable_data(out_place, pre_in.value().type());
|
||||
Tensor *out_tensor = out->mutable_value();
|
||||
|
||||
// copy
|
||||
int s = 0, e = 0;
|
||||
for (size_t j = 0; j < in_tensors.size(); ++j) {
|
||||
e += in_tensors[j].dims()[0];
|
||||
auto sub_out = out_tensor->Slice(s, e);
|
||||
paddle::framework::TensorCopy(in_tensors[j], out_place,
|
||||
*(dev_ctxes_[in_places[j]]), &sub_out);
|
||||
s = e;
|
||||
}
|
||||
}
|
||||
|
||||
std::string GatherOpHandle::Name() const { return "gather"; }
|
||||
} // namespace details
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
@ -0,0 +1,48 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "paddle/fluid/framework/details/op_handle_base.h"
|
||||
#include "paddle/fluid/framework/lod_tensor.h"
|
||||
#include "paddle/fluid/framework/scope.h"
|
||||
#include "paddle/fluid/framework/selected_rows.h"
|
||||
#include "paddle/fluid/platform/device_context.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
namespace details {
|
||||
|
||||
struct GatherOpHandle : public OpHandleBase {
|
||||
const std::vector<Scope *> &local_scopes_;
|
||||
const std::vector<platform::Place> &places_;
|
||||
|
||||
GatherOpHandle(const std::vector<Scope *> &local_scopes,
|
||||
const std::vector<platform::Place> &places);
|
||||
|
||||
std::string Name() const override;
|
||||
|
||||
bool IsMultiDeviceTransfer() override { return false; };
|
||||
|
||||
protected:
|
||||
void RunImpl() override;
|
||||
};
|
||||
|
||||
} // namespace details
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
@ -0,0 +1,192 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/framework/details/gather_op_handle.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
#include "paddle/fluid/platform/device_context.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
namespace details {
|
||||
namespace f = paddle::framework;
|
||||
namespace p = paddle::platform;
|
||||
|
||||
// test data amount
|
||||
const f::DDim kDims = {20, 20};
|
||||
|
||||
struct TestGatherOpHandle {
|
||||
std::vector<std::unique_ptr<p::DeviceContext>> ctxs_;
|
||||
std::vector<Scope*> local_scopes_;
|
||||
Scope g_scope_;
|
||||
std::unique_ptr<OpHandleBase> op_handle_;
|
||||
std::vector<std::unique_ptr<VarHandleBase>> vars_;
|
||||
std::vector<p::Place> gpu_list_;
|
||||
|
||||
void WaitAll() {
|
||||
for (size_t j = 0; j < ctxs_.size(); ++j) {
|
||||
ctxs_[j]->Wait();
|
||||
}
|
||||
}
|
||||
|
||||
void InitCtxOnGpu(bool use_gpu) {
|
||||
if (use_gpu) {
|
||||
#ifdef PADDLE_WITH_CUDA
|
||||
int count = p::GetCUDADeviceCount();
|
||||
if (count <= 1) {
|
||||
LOG(WARNING) << "Cannot test multi-gpu Broadcast, because the CUDA "
|
||||
"device count is "
|
||||
<< count;
|
||||
exit(0);
|
||||
}
|
||||
for (int i = 0; i < count; ++i) {
|
||||
auto p = p::CUDAPlace(i);
|
||||
gpu_list_.push_back(p);
|
||||
ctxs_.emplace_back(new p::CUDADeviceContext(p));
|
||||
}
|
||||
#else
|
||||
PADDLE_THROW("CUDA is not support.");
|
||||
#endif
|
||||
} else {
|
||||
int count = 8;
|
||||
for (int i = 0; i < count; ++i) {
|
||||
auto p = p::CPUPlace();
|
||||
gpu_list_.push_back(p);
|
||||
ctxs_.emplace_back(new p::CPUDeviceContext(p));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void InitGatherOp(size_t input_scope_idx) {
|
||||
for (size_t j = 0; j < gpu_list_.size(); ++j) {
|
||||
local_scopes_.push_back(&(g_scope_.NewScope()));
|
||||
local_scopes_[j]->Var("out");
|
||||
}
|
||||
local_scopes_[input_scope_idx]->Var("input");
|
||||
|
||||
op_handle_.reset(new GatherOpHandle(local_scopes_, gpu_list_));
|
||||
// add input
|
||||
for (size_t j = 0; j < gpu_list_.size(); ++j) {
|
||||
op_handle_->dev_ctxes_[gpu_list_[j]] = ctxs_[j].get();
|
||||
vars_.emplace_back(new VarHandle());
|
||||
VarHandle* in_var_handle = static_cast<VarHandle*>(vars_.back().get());
|
||||
in_var_handle->place_ = gpu_list_[j];
|
||||
in_var_handle->name_ = "input";
|
||||
in_var_handle->version_ = 1;
|
||||
in_var_handle->scope_idx_ = j;
|
||||
in_var_handle->generated_op_ = nullptr;
|
||||
op_handle_->AddInput(in_var_handle);
|
||||
}
|
||||
|
||||
// add dummy var
|
||||
vars_.emplace_back(new DummyVarHandle());
|
||||
DummyVarHandle* in_dummy_var_handle =
|
||||
static_cast<DummyVarHandle*>(vars_.back().get());
|
||||
in_dummy_var_handle->generated_op_ = nullptr;
|
||||
op_handle_->AddInput(in_dummy_var_handle);
|
||||
|
||||
// add output
|
||||
vars_.emplace_back(new VarHandle());
|
||||
VarHandle* out_var_handle = static_cast<VarHandle*>(vars_.back().get());
|
||||
out_var_handle->place_ = gpu_list_[input_scope_idx];
|
||||
out_var_handle->name_ = "out";
|
||||
out_var_handle->version_ = 2;
|
||||
out_var_handle->scope_idx_ = input_scope_idx;
|
||||
op_handle_->AddOutput(out_var_handle);
|
||||
|
||||
// add dummy var
|
||||
vars_.emplace_back(new DummyVarHandle());
|
||||
DummyVarHandle* dummy_var_handle =
|
||||
static_cast<DummyVarHandle*>(vars_.back().get());
|
||||
op_handle_->AddOutput(dummy_var_handle);
|
||||
}
|
||||
|
||||
void TestGatherSelectedRows(size_t output_scope_idx) {
|
||||
int height = kDims[0] * 2;
|
||||
std::vector<int64_t> rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1,
|
||||
2, 4, 6, 3, 1, 1, 1, 1, 3, 7};
|
||||
std::vector<float> send_vector(f::product(kDims));
|
||||
for (size_t k = 0; k < send_vector.size(); ++k) {
|
||||
send_vector[k] = k;
|
||||
}
|
||||
|
||||
for (size_t input_scope_idx = 0; input_scope_idx < gpu_list_.size();
|
||||
++input_scope_idx) {
|
||||
auto in_var = local_scopes_[input_scope_idx]->Var("input");
|
||||
auto in_selected_rows = in_var->GetMutable<f::SelectedRows>();
|
||||
auto value = in_selected_rows->mutable_value();
|
||||
value->mutable_data<float>(kDims, gpu_list_[input_scope_idx]);
|
||||
|
||||
in_selected_rows->set_height(height);
|
||||
in_selected_rows->set_rows(rows);
|
||||
|
||||
paddle::framework::TensorFromVector<float>(
|
||||
send_vector, *(ctxs_[input_scope_idx]), value);
|
||||
value->Resize(kDims);
|
||||
}
|
||||
|
||||
auto out_var = local_scopes_[output_scope_idx]->Var("out");
|
||||
auto out_selected_rows = out_var->GetMutable<f::SelectedRows>();
|
||||
|
||||
auto in_var = local_scopes_[output_scope_idx]->Var("input");
|
||||
auto in_selected_rows = in_var->GetMutable<f::SelectedRows>();
|
||||
|
||||
out_selected_rows->mutable_value()->ShareDataWith(
|
||||
in_selected_rows->value());
|
||||
|
||||
op_handle_->Run(false);
|
||||
|
||||
WaitAll();
|
||||
|
||||
p::CPUPlace cpu_place;
|
||||
|
||||
auto& out_select_rows = out_var->Get<f::SelectedRows>();
|
||||
auto rt = out_select_rows.value();
|
||||
|
||||
PADDLE_ENFORCE_EQ(out_select_rows.height(), height, "height is not equal.");
|
||||
for (size_t k = 0; k < out_select_rows.rows().size(); ++k) {
|
||||
PADDLE_ENFORCE_EQ(out_select_rows.rows()[k], rows[k % rows.size()]);
|
||||
}
|
||||
|
||||
f::Tensor result_tensor;
|
||||
f::TensorCopy(rt, cpu_place, *(ctxs_[output_scope_idx]), &result_tensor);
|
||||
float* ct = result_tensor.data<float>();
|
||||
|
||||
for (int64_t j = 0; j < f::product(kDims); ++j) {
|
||||
ASSERT_NEAR(ct[j], send_vector[j % send_vector.size()], 1e-5);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST(GatherTester, TestCPUGatherTestSelectedRows) {
|
||||
TestGatherOpHandle test_op;
|
||||
size_t input_scope_idx = 0;
|
||||
test_op.InitCtxOnGpu(false);
|
||||
test_op.InitGatherOp(input_scope_idx);
|
||||
test_op.TestGatherSelectedRows(input_scope_idx);
|
||||
}
|
||||
|
||||
#ifdef PADDLE_WITH_CUDA
|
||||
|
||||
TEST(GatherTester, TestGPUGatherTestSelectedRows) {
|
||||
TestGatherOpHandle test_op;
|
||||
size_t input_scope_idx = 0;
|
||||
test_op.InitCtxOnGpu(false);
|
||||
test_op.InitGatherOp(input_scope_idx);
|
||||
test_op.TestGatherSelectedRows(input_scope_idx);
|
||||
}
|
||||
#endif
|
||||
} // namespace details
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue