Add uniform_random XPU kernel (#27846)
* support uniform_random op on Baidu Kunlun * change dtype of attr shape from int to int64_t * kunlun ci, test=kunlun * new version, test=kunlun * change boost_get to BOOST_GET_CONST * change boost_get to BOOST_GET_CONST, test=kunlun * use Generator to generate random number and optimize format * run Kunlun CI, test=kunlun * add TODO, test=kunlunswt-req
parent
abf4d52a74
commit
74ce039743
@ -0,0 +1,75 @@
|
||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
|
||||
#include "paddle/fluid/operators/uniform_random_op.h"
|
||||
#include <string>
|
||||
#include "paddle/fluid/framework/generator.h"
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/framework/operator.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename T>
|
||||
class XPUUniformRandomKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||
framework::Tensor *tensor = nullptr;
|
||||
auto out_var = ctx.OutputVar("Out");
|
||||
if (out_var->IsType<framework::LoDTensor>()) {
|
||||
tensor = out_var->GetMutable<framework::LoDTensor>();
|
||||
} else if (out_var->IsType<framework::SelectedRows>()) {
|
||||
auto shape = ctx.Attr<std::vector<int64_t>>("shape");
|
||||
auto *selected_rows = out_var->GetMutable<framework::SelectedRows>();
|
||||
tensor = selected_rows->mutable_value();
|
||||
tensor->Resize(framework::make_ddim(shape));
|
||||
selected_rows->mutable_rows()->reserve(shape[0]);
|
||||
} else {
|
||||
PADDLE_THROW(platform::errors::InvalidArgument(
|
||||
"Expected type of Output(out) in uniform_random_op must be "
|
||||
"LoDTensor, "
|
||||
"SelectedRows. But got unsupport type: %s.",
|
||||
framework::ToTypeName(out_var->Type())));
|
||||
}
|
||||
T *data = tensor->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
int64_t size = tensor->numel();
|
||||
std::uniform_real_distribution<T> dist(
|
||||
static_cast<T>(ctx.Attr<float>("min")),
|
||||
static_cast<T>(ctx.Attr<float>("max")));
|
||||
unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
|
||||
// TODO(pangyoki): implement GetXPURandomEngine to set different seeds on
|
||||
// corresponding XPU device.
|
||||
auto engine = framework::GetCPURandomEngine(seed);
|
||||
|
||||
std::unique_ptr<T[]> data_cpu(new T[size]);
|
||||
for (int64_t i = 0; i < size; ++i) {
|
||||
data_cpu[i] = dist(*engine);
|
||||
}
|
||||
|
||||
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace()), data,
|
||||
platform::CPUPlace(), reinterpret_cast<void *>(data_cpu.get()),
|
||||
size * sizeof(T));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_OP_XPU_KERNEL(uniform_random,
|
||||
paddle::operators::XPUUniformRandomKernel<float>);
|
||||
|
||||
#endif // PADDLE_WITH_XPU
|
@ -0,0 +1,51 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
import subprocess
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.op import Operator
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import Program, program_guard
|
||||
from test_uniform_random_op import TestUniformRandomOp, TestUniformRandomOpSelectedRows
|
||||
|
||||
paddle.enable_static()
|
||||
|
||||
|
||||
class TestXPUUniformRandomOp(TestUniformRandomOp):
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
outs = self.calc_output(place)
|
||||
outs = [np.array(out) for out in outs]
|
||||
outs.sort(key=len)
|
||||
self.verify_output(outs)
|
||||
|
||||
|
||||
class TestXPUUniformRandomOpSelectedRows(TestUniformRandomOpSelectedRows):
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_with_place(place)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue