|
|
|
@ -33,6 +33,13 @@ os.environ['CPU_NUM'] = '2'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BuildIrMemOptBase(unittest.TestCase):
|
|
|
|
|
def setup_reader(self):
|
|
|
|
|
self.batch_size = 32
|
|
|
|
|
self.word_dict = paddle.dataset.imdb.word_dict()
|
|
|
|
|
self.train_reader = paddle.batch(
|
|
|
|
|
paddle.dataset.imdb.train(self.word_dict),
|
|
|
|
|
batch_size=self.batch_size)
|
|
|
|
|
|
|
|
|
|
def check_network_convergence(self,
|
|
|
|
|
network,
|
|
|
|
|
use_cuda=True,
|
|
|
|
@ -51,35 +58,34 @@ class BuildIrMemOptBase(unittest.TestCase):
|
|
|
|
|
return
|
|
|
|
|
fluid.default_startup_program().random_seed = 100
|
|
|
|
|
fluid.default_main_program().random_seed = 100
|
|
|
|
|
batch_size = 32
|
|
|
|
|
batch_size *= fluid.core.get_cuda_device_count() if use_cuda else int(
|
|
|
|
|
os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
|
|
|
|
|
|
|
|
|
|
# build network
|
|
|
|
|
word_dict = paddle.dataset.imdb.word_dict()
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.dataset.imdb.train(word_dict), batch_size=batch_size)
|
|
|
|
|
|
|
|
|
|
data = fluid.layers.data(
|
|
|
|
|
name="words", shape=[1], dtype="int64", lod_level=1)
|
|
|
|
|
|
|
|
|
|
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
|
|
|
|
|
|
|
|
|
cost = network(data, label, len(word_dict))
|
|
|
|
|
cost = network(data, label, len(self.word_dict))
|
|
|
|
|
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
|
|
|
|
|
optimizer.minimize(cost)
|
|
|
|
|
build_strategy = fluid.BuildStrategy()
|
|
|
|
|
build_strategy.enable_inplace = False
|
|
|
|
|
build_strategy.memory_optimize = False
|
|
|
|
|
if memory_opt:
|
|
|
|
|
fluid.memory_optimize(fluid.default_main_program())
|
|
|
|
|
else:
|
|
|
|
|
build_strategy.enable_inplace = use_ir_memory_optimize
|
|
|
|
|
build_strategy.memory_optimize = enable_inplace
|
|
|
|
|
|
|
|
|
|
# execution
|
|
|
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
|
|
|
feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
|
|
|
|
|
reader = feeder.decorate_reader(train_reader, multi_devices=True)
|
|
|
|
|
reader = feeder.decorate_reader(self.train_reader, multi_devices=True)
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
|
|
|
|
|
|
train_cp = compiler.CompiledProgram(fluid.default_main_program())
|
|
|
|
|
train_cp = train_cp.with_data_parallel(loss_name=cost.name)
|
|
|
|
|
train_cp = train_cp.with_data_parallel(
|
|
|
|
|
loss_name=cost.name, build_strategy=build_strategy)
|
|
|
|
|
fetch_list = [cost.name]
|
|
|
|
|
|
|
|
|
|
begin = time.time()
|
|
|
|
@ -100,7 +106,7 @@ class BuildIrMemOptBase(unittest.TestCase):
|
|
|
|
|
end = time.time()
|
|
|
|
|
|
|
|
|
|
print("%.4f Instance per second" % (
|
|
|
|
|
(batch_size * iter) / (end - begin)))
|
|
|
|
|
(self.batch_size * iter) / (end - begin)))
|
|
|
|
|
|
|
|
|
|
print(first_loss, last_loss)
|
|
|
|
|
avg_last_loss_val = np.array(last_loss).mean()
|
|
|
|
@ -120,31 +126,21 @@ class TestIrMemOptBase(BuildIrMemOptBase):
|
|
|
|
|
if self.network is None or not core.is_compiled_with_cuda():
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
baseline_first_loss, baseline_last_loss = None, None
|
|
|
|
|
for use_cuda in [True]:
|
|
|
|
|
for use_python_mem_opt in [True, False]:
|
|
|
|
|
print(
|
|
|
|
|
'network: {}, use_cuda: {}, use_python_mem_opt: {}, use_ir_mem_opt : {}'.
|
|
|
|
|
format(self.network.__name__, use_cuda, use_python_mem_opt,
|
|
|
|
|
not use_python_mem_opt))
|
|
|
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
|
|
|
with fluid.scope_guard(core.Scope()):
|
|
|
|
|
if use_cuda is True and use_python_mem_opt is True:
|
|
|
|
|
baseline_first_loss, baseline_last_loss = self.check_network_convergence(
|
|
|
|
|
self.network,
|
|
|
|
|
use_cuda=use_cuda,
|
|
|
|
|
memory_opt=use_python_mem_opt)
|
|
|
|
|
else:
|
|
|
|
|
cur_first_loss, cur_last_loss = self.check_network_convergence(
|
|
|
|
|
self.network,
|
|
|
|
|
use_cuda=use_cuda,
|
|
|
|
|
memory_opt=use_python_mem_opt)
|
|
|
|
|
|
|
|
|
|
self.assertAlmostEquals(
|
|
|
|
|
np.mean(baseline_last_loss),
|
|
|
|
|
np.mean(cur_last_loss),
|
|
|
|
|
delta=1e-2)
|
|
|
|
|
self.assertAlmostEquals(
|
|
|
|
|
np.mean(baseline_first_loss),
|
|
|
|
|
np.mean(cur_first_loss),
|
|
|
|
|
delta=1e-2)
|
|
|
|
|
self.setup_reader()
|
|
|
|
|
|
|
|
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
|
|
|
with fluid.scope_guard(core.Scope()):
|
|
|
|
|
baseline_first_loss, baseline_last_loss = self.check_network_convergence(
|
|
|
|
|
self.network)
|
|
|
|
|
|
|
|
|
|
cur_first_loss, cur_last_loss = self.check_network_convergence(
|
|
|
|
|
self.network, memory_opt=False)
|
|
|
|
|
|
|
|
|
|
self.assertAlmostEquals(
|
|
|
|
|
np.mean(baseline_last_loss),
|
|
|
|
|
np.mean(cur_last_loss),
|
|
|
|
|
delta=1e-6)
|
|
|
|
|
self.assertAlmostEquals(
|
|
|
|
|
np.mean(baseline_first_loss),
|
|
|
|
|
np.mean(cur_first_loss),
|
|
|
|
|
delta=1e-6)
|
|
|
|
|