|
|
|
@ -52,7 +52,7 @@ def grad_var_name(var_name):
|
|
|
|
|
return var_name + "@GRAD"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sgd_optimizer(net, param_name, learning_rate=0.01):
|
|
|
|
|
def sgd_optimizer(net, param_name, learning_rate=0.005):
|
|
|
|
|
grad_name = grad_var_name(param_name)
|
|
|
|
|
optimize_op = Operator(
|
|
|
|
|
"sgd",
|
|
|
|
@ -166,9 +166,9 @@ def set_cost():
|
|
|
|
|
cost_grad.set(numpy.ones(cost_shape).astype("float32"), place)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def print_cost():
|
|
|
|
|
def mean_cost():
|
|
|
|
|
cost_data = numpy.array(scope.find_var("cross_entropy_3").get_tensor())
|
|
|
|
|
print(cost_data.sum() / len(cost_data))
|
|
|
|
|
return cost_data.sum() / len(cost_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def error_rate(predict, label):
|
|
|
|
@ -176,7 +176,7 @@ def error_rate(predict, label):
|
|
|
|
|
axis=1)
|
|
|
|
|
label = numpy.array(scope.find_var(label).get_tensor())
|
|
|
|
|
error_num = numpy.sum(predict_var != label)
|
|
|
|
|
print(error_num / float(len(label)))
|
|
|
|
|
return error_num / float(len(label))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
images = data_layer(name='pixel', dims=[BATCH_SIZE, 784])
|
|
|
|
@ -198,16 +198,35 @@ print_inputs_outputs(forward_network)
|
|
|
|
|
print_inputs_outputs(backward_net)
|
|
|
|
|
print_inputs_outputs(optimize_net)
|
|
|
|
|
|
|
|
|
|
reader = paddle.batch(
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.reader.shuffle(
|
|
|
|
|
paddle.dataset.mnist.train(), buf_size=8192),
|
|
|
|
|
batch_size=BATCH_SIZE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test():
|
|
|
|
|
test_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128)
|
|
|
|
|
cost = []
|
|
|
|
|
error = []
|
|
|
|
|
for data in test_reader():
|
|
|
|
|
image = numpy.array(map(lambda x: x[0], data)).astype("float32")
|
|
|
|
|
label = numpy.array(map(lambda x: x[1], data)).astype("int32")
|
|
|
|
|
feed_data("pixel", image)
|
|
|
|
|
feed_data("label", label)
|
|
|
|
|
|
|
|
|
|
forward_network.infer_shape(scope)
|
|
|
|
|
forward_network.run(scope, dev_ctx)
|
|
|
|
|
cost.append(mean_cost())
|
|
|
|
|
error.append(error_rate(predict, "label"))
|
|
|
|
|
print("cost=" + str(sum(cost) / float(len(cost))) + " error_rate=" + str(
|
|
|
|
|
sum(error) / float(len(error))))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PASS_NUM = 1000
|
|
|
|
|
for pass_id in range(PASS_NUM):
|
|
|
|
|
batch_id = 0
|
|
|
|
|
|
|
|
|
|
for data in reader():
|
|
|
|
|
for data in train_reader():
|
|
|
|
|
image = numpy.array(map(lambda x: x[0], data)).astype("float32")
|
|
|
|
|
label = numpy.array(map(lambda x: x[1], data)).astype("int32")
|
|
|
|
|
feed_data("pixel", image)
|
|
|
|
@ -222,7 +241,8 @@ for pass_id in range(PASS_NUM):
|
|
|
|
|
optimize_net.run(scope, dev_ctx)
|
|
|
|
|
if batch_id % 100 == 0:
|
|
|
|
|
print("pass[" + str(pass_id) + "] batch_id[" + str(batch_id) + "]")
|
|
|
|
|
print_cost()
|
|
|
|
|
error_rate(predict, "label")
|
|
|
|
|
test()
|
|
|
|
|
# print(mean_cost())
|
|
|
|
|
# print(error_rate(predict, "label"))
|
|
|
|
|
|
|
|
|
|
batch_id = batch_id + 1
|
|
|
|
|