Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into softmax_cross_support_high_rank

revert-16839-cmakelist_change
phlrain 6 years ago
commit 766c868199

@ -47,33 +47,34 @@ find_package(Threads REQUIRED)
include(simd)
################################ Configurations #######################################
################################ Exposed Configurations #######################################
option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND})
option(WITH_AMD_GPU "Compile PaddlePaddle with AMD GPU" OFF)
option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON)
option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND})
option(WITH_PYTHON "Compile PaddlePaddle with python interpreter" ON)
option(WITH_TESTING "Compile PaddlePaddle with unit testing" OFF)
option(WITH_MKL "Compile PaddlePaddle with MKL support." ${AVX_FOUND})
option(WITH_SYSTEM_BLAS "Use system blas library" OFF)
option(WITH_DISTRIBUTE "Compile with distributed support" OFF)
option(WITH_BRPC_RDMA "Use brpc rdma as the rpc protocal" OFF)
option(ON_INFER "Turn on inference optimization." OFF)
option(WITH_ANAKIN "Compile with Anakin library" OFF)
################################ Internal Configurations #######################################
option(WITH_AMD_GPU "Compile PaddlePaddle with AMD GPU" OFF)
option(WITH_NGRAPH "Compile PaddlePaddle with nGraph support." OFF)
option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON)
option(WITH_TESTING "Compile PaddlePaddle with unit testing" OFF)
option(WITH_PYTHON "Compile PaddlePaddle with python interpreter" ON)
option(WITH_PROFILER "Compile PaddlePaddle with GPU profiler and gperftools" OFF)
option(WITH_JEMALLOC "Compile PaddlePaddle with jemalloc" OFF)
option(WITH_COVERAGE "Compile PaddlePaddle with code coverage" OFF)
option(COVERALLS_UPLOAD "Package code coverage data to coveralls" OFF)
option(WITH_DISTRIBUTE "Compile with distributed support" OFF)
option(WITH_PSLIB "Compile with pslib support" OFF)
option(WITH_CONTRIB "Compile the third-party contributation" OFF)
option(REPLACE_ENFORCE_GLOG "Replace PADDLE_ENFORCE with glog/CHECK for better debug." OFF)
# TODO(Superjomn) Remove WITH_ANAKIN option if not needed latter.
option(WITH_ANAKIN "Compile with Anakin library" OFF)
option(ANAKIN_BUILD_FAT_BIN "Build anakin cuda fat-bin lib for all device plantform, ignored when WITH_ANAKIN=OFF" OFF)
option(ANAKIN_BUILD_CROSS_PLANTFORM "Build anakin lib for any nvidia device plantform. ignored when WITH_ANAKIN=OFF" ON)
option(WITH_GRPC "Use grpc as the default rpc framework" ${WITH_DISTRIBUTE})
option(WITH_BRPC_RDMA "Use brpc rdma as the rpc protocal" OFF)
option(ON_INFER "Turn on inference optimization." OFF)
option(WITH_INFERENCE_API_TEST "Test fluid inference C++ high-level api interface" OFF)
option(WITH_HIGH_LEVEL_API_TEST "Test fluid python high-level api interface" OFF)
option(WITH_SYSTEM_BLAS "Use system blas library" OFF)
option(PY_VERSION "Compile PaddlePaddle with python3 support" ${PY_VERSION})
option(WITH_FAST_MATH "Make use of fast math library, might affect the precision to some extent" ON)

@ -241,6 +241,7 @@ paddle.fluid.layers.tree_conv (ArgSpec(args=['nodes_vector', 'edge_set', 'output
paddle.fluid.layers.npair_loss (ArgSpec(args=['anchor', 'positive', 'labels', 'l2_reg'], varargs=None, keywords=None, defaults=(0.002,)), ('document', '46994d10276dd4cb803b4062b5d14329'))
paddle.fluid.layers.pixel_shuffle (ArgSpec(args=['x', 'upscale_factor'], varargs=None, keywords=None, defaults=None), ('document', '731b21c62a4add60a33bd76d802ffc5c'))
paddle.fluid.layers.fsp_matrix (ArgSpec(args=['x', 'y'], varargs=None, keywords=None, defaults=None), ('document', 'b76ccca3735bea4a58a0dbf0d77c5393'))
paddle.fluid.layers.continuous_value_model (ArgSpec(args=['input', 'cvm', 'use_cvm'], varargs=None, keywords=None, defaults=(True,)), ('document', 'a07a44c2bacdcd09c1f5f35a96a0514e'))
paddle.fluid.layers.data (ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)), ('document', '33bbd42027d872b3818b3d64ec52e139'))
paddle.fluid.layers.open_files (ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None)), ('document', 'b1ae2e1cc0750e58726374061ea90ecc'))
paddle.fluid.layers.read_file (ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None), ('document', 'b0a1c2fc51c27a106da28f3308c41f5e'))
@ -301,12 +302,12 @@ paddle.fluid.layers.DynamicRNN.static_input (ArgSpec(args=['self', 'x'], varargs
paddle.fluid.layers.DynamicRNN.step_input (ArgSpec(args=['self', 'x', 'level'], varargs=None, keywords=None, defaults=(0,)), ('document', '7568c5ac7622a10288d3307a94134655'))
paddle.fluid.layers.DynamicRNN.update_memory (ArgSpec(args=['self', 'ex_mem', 'new_mem'], varargs=None, keywords=None, defaults=None), ('document', '5d83987da13b98363d6a807a52d8024f'))
paddle.fluid.layers.StaticRNN.__init__ (ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.StaticRNN.memory (ArgSpec(args=['self', 'init', 'shape', 'batch_ref', 'init_value', 'init_batch_dim_idx', 'ref_batch_dim_idx'], varargs=None, keywords=None, defaults=(None, None, None, 0.0, 0, 1)), ('document', 'c24e368e23afac1ed91a78a639d7a9c7'))
paddle.fluid.layers.StaticRNN.output (ArgSpec(args=['self'], varargs='outputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.StaticRNN.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.StaticRNN.step_input (ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.StaticRNN.step_output (ArgSpec(args=['self', 'o'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.StaticRNN.update_memory (ArgSpec(args=['self', 'mem', 'var'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.StaticRNN.memory (ArgSpec(args=['self', 'init', 'shape', 'batch_ref', 'init_value', 'init_batch_dim_idx', 'ref_batch_dim_idx'], varargs=None, keywords=None, defaults=(None, None, None, 0.0, 0, 1)), ('document', '72530f299d6451a567cf4a12dc3fb1ff'))
paddle.fluid.layers.StaticRNN.output (ArgSpec(args=['self'], varargs='outputs', keywords=None, defaults=None), ('document', 'df6ceab6e6c9bd31e97914d7e7538137'))
paddle.fluid.layers.StaticRNN.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6d3e0a5d9aa519a9773a36e1620ea9b7'))
paddle.fluid.layers.StaticRNN.step_input (ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None), ('document', '903387ec11f3d0bf46821d31a68cffa5'))
paddle.fluid.layers.StaticRNN.step_output (ArgSpec(args=['self', 'o'], varargs=None, keywords=None, defaults=None), ('document', '252890d4c3199a7623ab8667e13fd837'))
paddle.fluid.layers.StaticRNN.update_memory (ArgSpec(args=['self', 'mem', 'var'], varargs=None, keywords=None, defaults=None), ('document', '7a0000520f179f35239956a5ba55119f'))
paddle.fluid.layers.reorder_lod_tensor_by_rank (ArgSpec(args=['x', 'rank_table'], varargs=None, keywords=None, defaults=None), ('document', '3545f529ef04e8f6ecb76b47fa3df01a'))
paddle.fluid.layers.Print (ArgSpec(args=['input', 'first_n', 'message', 'summarize', 'print_tensor_name', 'print_tensor_type', 'print_tensor_shape', 'print_tensor_lod', 'print_phase'], varargs=None, keywords=None, defaults=(-1, None, -1, True, True, True, True, 'both')), ('document', '5fef91b0e21c93610785f2b1f7161732'))
paddle.fluid.layers.is_empty (ArgSpec(args=['x', 'cond'], varargs=None, keywords=None, defaults=(None,)), ('document', 'bbe578dbb49ad13e15b014e98c22b519'))

@ -64,9 +64,12 @@ void ProcessGraph(std::vector<ir::Graph *> graphs, Scope *scope) {
node->Op()->GetNullableAttr("epmap"));
auto height_section = boost::get<std::vector<int64_t>>(
node->Op()->GetNullableAttr("sections"));
auto trainer_id =
boost::get<int>(node->Op()->GetNullableAttr("trainer_id"));
send_varname_to_ctx[send_var_name] =
operators::distributed::RpcContext(send_var_name, send_varnames,
epmap, height_section);
epmap, height_section,
trainer_id);
VLOG(3) << "find and init an send op: "
<< send_varname_to_ctx[send_var_name];
} else if (node->Name() == "recv") {
@ -75,9 +78,11 @@ void ProcessGraph(std::vector<ir::Graph *> graphs, Scope *scope) {
node->Op()->GetNullableAttr("recv_varnames"));
auto epmap = boost::get<std::vector<std::string>>(
node->Op()->GetNullableAttr("epmap"));
auto trainer_id =
boost::get<int>(node->Op()->GetNullableAttr("trainer_id"));
recv_varname_to_ctx[recv_var_name] =
operators::distributed::RpcContext(recv_var_name, recv_varnames,
epmap, {});
epmap, {}, trainer_id);
nodes_to_delete.push_back(node);
VLOG(3) << "find and remove an recv op: "
<< recv_varname_to_ctx[recv_var_name];

@ -101,8 +101,6 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
"mode.";
strategy_.fuse_all_optimizer_ops_ = false;
} else {
VLOG(10) << "Add alloc_continuous_space_for_grad_pass";
AppendPass("alloc_continuous_space_for_grad_pass");
// NOTE: fuse_all_xx_ops will count the number of xx operator first,
// if the number is zero, fuse_all_reduce_ops will do nothing.
// Currently, only one type of optimization algorithm can be fused.

@ -24,7 +24,7 @@ namespace details {
const std::string FuseAdamOpPass::GetOpType() const { return "adam"; }
const std::vector<std::string> FuseAdamOpPass::GetAuxiliaryVarNames() const {
return {"Param", "Moment1", "Moment2", "Beta1Pow", "Beta2Pow"};
return {"Moment1", "Moment2", "Beta1Pow", "Beta2Pow"};
}
void FuseAdamOpPass::FuseOptimizerOps(
@ -77,16 +77,16 @@ void FuseAdamOpPass::FuseAdamOps(
VLOG(10) << "Insert adam to graph ";
OpDesc adam_desc(adam_ops[0]->Op()->Block());
adam_desc.SetType("adam");
adam_desc.SetInput("Param", {fused_vars_name.at("Param")});
adam_desc.SetInput("Grad", {fused_vars_name.at("Grad")});
adam_desc.SetInput(kParam, {fused_vars_name.at(kParam)});
adam_desc.SetInput(kGrad, {fused_vars_name.at(kGrad)});
adam_desc.SetInput("Moment1", {fused_vars_name.at("Moment1")});
adam_desc.SetInput("Moment2", {fused_vars_name.at("Moment2")});
// TODO(zcd): The LearningRate, Beta1Pow, Beta2Pow should be equal.
adam_desc.SetInput("LearningRate", adam_ops[0]->Op()->Input("LearningRate"));
adam_desc.SetInput(kLearningRate, adam_ops[0]->Op()->Input(kLearningRate));
adam_desc.SetInput("Beta1Pow", adam_ops[0]->Op()->Input("Beta1Pow"));
adam_desc.SetInput("Beta2Pow", adam_ops[0]->Op()->Input("Beta2Pow"));
adam_desc.SetOutput("ParamOut", {fused_vars_name.at("Param")});
adam_desc.SetOutput("ParamOut", {fused_vars_name.at(kParam)});
adam_desc.SetOutput("Moment1Out", {fused_vars_name.at("Moment1")});
adam_desc.SetOutput("Moment2Out", {fused_vars_name.at("Moment2")});
adam_desc.SetAttr("beta1", beta1);

@ -29,7 +29,9 @@ void FuseOptimizerOpPass::ApplyImpl(ir::Graph *graph) const {
auto &local_scopes = Get<const std::vector<Scope *>>(kLocalScopes);
const std::string fuse_op_type = GetOpType();
const std::vector<std::string> aux_var_names = GetAuxiliaryVarNames();
std::vector<std::string> aux_var_names = GetAuxiliaryVarNames();
aux_var_names.emplace_back(kParam);
aux_var_names.emplace_back(kGrad);
// Step 1: Get the specified op and auxiliary variables.
std::vector<ir::Node *> topo_nodes = ir::TopologySortOperations(result);
@ -61,7 +63,7 @@ void FuseOptimizerOpPass::ApplyImpl(ir::Graph *graph) const {
result.Set(kFusedVars, new FusedVars);
}
std::unordered_map<std::string, std::string> fused_vars_name;
fused_vars_name.reserve(aux_var_names.size() + 1);
fused_vars_name.reserve(aux_var_names.size());
auto &fused_var_set = result.Get<FusedVars>(kFusedVars);
const std::string prefix(kFusedVarNamePrefix);
// NOTE: the fused_var_name should be unique.
@ -75,39 +77,103 @@ void FuseOptimizerOpPass::ApplyImpl(ir::Graph *graph) const {
}
// Step 3: Get the fused Gradient's name
auto &params_grads = result.Get<ParamsAndGrads>(kParamsAndGrads);
if (!result.Has(kFusedGrads)) {
PADDLE_THROW(
"The alloc_continuous_space_for_grad_pass should be called before this "
"pass.");
}
auto &fused_grad = result.Get<FusedGrads>(kFusedGrads);
auto &fused_vars = result.Get<FusedVars>(kFusedVars);
auto iter = std::find(fused_vars.begin(), fused_vars.end(), fused_grad);
PADDLE_ENFORCE(iter != fused_vars.end(), "Not find the fused_grad.");
fused_vars_name.emplace("Grad", fused_grad);
// Step 4: Sort the parameters and auxiliary variables according
// to parameters' name to make variables' name correspond correctly.
PADDLE_ENFORCE(result.Has(kParamsAndGrads), "Does't find kParamsAndGrads.");
PADDLE_ENFORCE_EQ(params_grads.size(), aux_var_set.begin()->second.size(),
"The size of params_grads and aux_var_set are not equal.");
SortParametersAndAuxVars(params_grads, &aux_var_set, &opt_ops);
// Step 5: Alloc continuous space for Parameters and AuxiliaryVar(e.g.
bool grad_fused = false;
if (result.Has(kParamsAndGrads)) {
auto &params_grads = result.Get<ParamsAndGrads>(kParamsAndGrads);
PADDLE_ENFORCE_EQ(
params_grads.size(), aux_var_set.at(kGrad).size(),
"The number of gradients and optimizer ops is not equal.");
std::unordered_set<std::string> opt_grad_set(aux_var_set.at(kGrad).begin(),
aux_var_set.at(kGrad).end());
size_t same_grad_num = 0;
for (auto &p_g : params_grads) {
if (opt_grad_set.count(p_g.second)) {
++same_grad_num;
}
}
// NOTE(zcd): the gradient of kParamsAndGrads may be different with the
// kGrad.
if (same_grad_num == aux_var_set.at(kGrad).size()) {
if (!result.Has(kFusedGrads)) {
PADDLE_THROW(
"The alloc_continuous_space_for_grad_pass should be called before "
"this pass.");
}
auto &fused_grad = result.Get<FusedGrads>(kFusedGrads);
auto &fused_vars = result.Get<FusedVars>(kFusedVars);
auto iter = std::find(fused_vars.begin(), fused_vars.end(), fused_grad);
PADDLE_ENFORCE(iter != fused_vars.end(), "Not find the fused_grad.");
fused_vars_name[kGrad] = fused_grad;
// Sort the parameters and auxiliary variables according
// to parameters' name to make variables' name correspond correctly.
SortParametersAndAuxVars(params_grads, &aux_var_set, &opt_ops);
grad_fused = true;
}
}
// Step 4: Alloc continuous space for Parameters and AuxiliaryVar(e.g.
// Moment1, Moment2, Beta1Pow, Beta2Pow) of all the optimizer ops separately.
aux_var_names.pop_back();
if (!grad_fused) {
InitFusedGradsAndAllocSpaceForGrads(
places, local_scopes, aux_var_set.at(kParam), aux_var_set.at(kGrad),
fused_vars_name.at(kGrad), &result);
}
InitFusedVarsAndAllocSpaceForVars(places, local_scopes, aux_var_names,
aux_var_set, fused_vars_name);
// Step 6: Fuse optimizer Ops and Scale Ops
// Step 5: Fuse optimizer Ops and Scale Ops
FuseOptimizerOps(aux_var_set, fused_vars_name, opt_ops, &result);
// Step 7: Remove optimizer Ops
// Step 6: Remove optimizer Ops
for (auto &opt_op : opt_ops) {
graph->RemoveNode(opt_op);
}
}
void FuseOptimizerOpPass::InitFusedGradsAndAllocSpaceForGrads(
const std::vector<platform::Place> &places,
const std::vector<Scope *> &local_scopes,
const std::vector<std::string> &params,
const std::vector<std::string> &grads, const std::string &fused_grad_name,
ir::Graph *result) const {
// Get Var Nodes
std::unordered_map<std::string, ir::Node *> vars;
for (ir::Node *node : result->Nodes()) {
if (node->IsVar() && node->Var()) {
// Note: The graph may have the same name node. For example, parameter
// is the input of operator and it also is the output of optimizer;
vars.emplace(node->Var()->Name(), node);
}
}
// Init Grads
for (auto it = local_scopes.rbegin(); it != local_scopes.rend(); ++it) {
auto &scope = *it;
VLOG(10) << "Init " << fused_grad_name;
PADDLE_ENFORCE(scope->FindVar(fused_grad_name) == nullptr,
"%s has existed in scope.", fused_grad_name);
scope->Var(fused_grad_name)->GetMutable<LoDTensor>();
for (auto &grad_var_name : grads) {
auto iter = vars.find(grad_var_name);
PADDLE_ENFORCE(iter != vars.end());
PADDLE_ENFORCE_NOT_NULL(iter->second->Var());
PADDLE_ENFORCE_EQ(iter->second->Var()->GetType(),
proto::VarType::LOD_TENSOR);
scope->Var(grad_var_name)->GetMutable<LoDTensor>();
}
}
// Define Ops
ProgramDesc program_desc;
auto *global_block = program_desc.MutableBlock(0);
AppendAllocContinuousSpace(params, grads, fused_grad_name, global_block,
false, false);
// Run Ops
RunInitOps(places, local_scopes, *global_block);
}
void FuseOptimizerOpPass::InitFusedVarsAndAllocSpaceForVars(
const std::vector<platform::Place> &places,
const std::vector<Scope *> &local_scopes,
@ -115,37 +181,49 @@ void FuseOptimizerOpPass::InitFusedVarsAndAllocSpaceForVars(
const std::unordered_map<std::string, std::vector<std::string>>
&aux_var_set,
const std::unordered_map<std::string, std::string> &fused_vars_name) const {
VLOG(10) << "Init FusedVars.";
// Alloc parameters and auxiliary vars in the respective scope.
size_t idx = local_scopes.size();
for (auto iter = local_scopes.rbegin(); iter != local_scopes.rend();
++iter, --idx) {
auto &scope = *iter;
for (auto &var_name : aux_var_names) {
auto fused_var_name = fused_vars_name.at(var_name);
VLOG(10) << "Init " << fused_var_name;
PADDLE_ENFORCE(scope->FindVar(fused_var_name) == nullptr,
"%s has exist in scope[%d]", fused_var_name, idx);
scope->Var(fused_var_name)->GetMutable<LoDTensor>();
}
// Init Vars
for (auto &var_name : aux_var_names) {
auto &fused_var_name = fused_vars_name.at(var_name);
InitVars(local_scopes, fused_var_name);
}
// Define Ops
ProgramDesc program_desc;
auto *global_block = program_desc.MutableBlock(0);
for (auto &var_name : aux_var_names) {
AppendAllocContinuousSpace(aux_var_set.at(var_name),
fused_vars_name.at(var_name), true,
global_block);
AppendAllocContinuousSpace(
aux_var_set.at(var_name), aux_var_set.at(var_name),
fused_vars_name.at(var_name), global_block, true);
}
// Run Ops
RunInitOps(places, local_scopes, *global_block);
}
void FuseOptimizerOpPass::RunInitOps(const std::vector<platform::Place> &places,
const std::vector<Scope *> &local_scopes,
const BlockDesc &global_block) const {
for (size_t i = 0; i < local_scopes.size(); ++i) {
for (auto &op_desc : global_block->AllOps()) {
for (auto &op_desc : global_block.AllOps()) {
auto op = OpRegistry::CreateOp(*op_desc);
op->Run(*local_scopes[i], places[i]);
}
}
}
void FuseOptimizerOpPass::InitVars(const std::vector<Scope *> &local_scopes,
const std::string &fused_var_name) const {
VLOG(10) << "Init FusedVars.";
// Alloc parameters and auxiliary vars in the respective scope.
size_t idx = local_scopes.size();
for (auto iter = local_scopes.rbegin(); iter != local_scopes.rend();
++iter, --idx) {
auto &scope = *iter;
VLOG(10) << "Init " << fused_var_name;
PADDLE_ENFORCE(scope->FindVar(fused_var_name) == nullptr,
"%s has exist in scope[%d]", fused_var_name, idx);
scope->Var(fused_var_name)->GetMutable<LoDTensor>();
}
}
void FuseOptimizerOpPass::SortParametersAndAuxVars(
const std::vector<std::pair<std::string, std::string>> &params_grads,
std::unordered_map<std::string, std::vector<std::string>> *aux_vars_set,
@ -203,15 +281,16 @@ void FuseOptimizerOpPass::GetSpecifiedOpsAndVars(
}
void FuseOptimizerOpPass::AppendAllocContinuousSpace(
const std::vector<std::string> &args, const std::string &out_arg,
bool copy_data, BlockDesc *global_block) const {
const std::vector<std::string> &in_args,
const std::vector<std::string> &out_args, const std::string &fused_out_arg,
BlockDesc *global_block, bool copy_data, bool check_name) const {
auto op_desc = global_block->AppendOp();
op_desc->SetType("alloc_continuous_space");
op_desc->SetInput("Input", args);
op_desc->SetOutput("Output", args);
op_desc->SetOutput("FusedOutput", {out_arg});
op_desc->SetInput("Input", in_args);
op_desc->SetOutput("Output", out_args);
op_desc->SetOutput("FusedOutput", {fused_out_arg});
op_desc->SetAttr("copy_data", copy_data);
op_desc->SetAttr("check_name", true);
op_desc->SetAttr("check_name", check_name);
}
void FuseOptimizerOpPass::InserInputAndOutputForOptOps(

@ -27,6 +27,10 @@ namespace paddle {
namespace framework {
namespace details {
constexpr char kGrad[] = "Grad";
constexpr char kParam[] = "Param";
constexpr char kLearningRate[] = "LearningRate";
class FuseOptimizerOpPass : public ir::Pass {
protected:
void ApplyImpl(ir::Graph *graph) const override;
@ -56,9 +60,18 @@ class FuseOptimizerOpPass : public ir::Pass {
std::unordered_map<std::string, std::vector<std::string>> *aux_args_name)
const;
void AppendAllocContinuousSpace(const std::vector<std::string> &args,
const std::string &out_arg, bool copy_data,
BlockDesc *global_block) const;
void AppendAllocContinuousSpace(const std::vector<std::string> &in_args,
const std::vector<std::string> &out_args,
const std::string &fused_out_arg,
BlockDesc *global_block, bool copy_data,
bool check_name = true) const;
void InitFusedGradsAndAllocSpaceForGrads(
const std::vector<platform::Place> &places,
const std::vector<Scope *> &local_scopes,
const std::vector<std::string> &params,
const std::vector<std::string> &grads, const std::string &fused_grad_name,
ir::Graph *result) const;
void InitFusedVarsAndAllocSpaceForVars(
const std::vector<platform::Place> &places,
@ -68,6 +81,13 @@ class FuseOptimizerOpPass : public ir::Pass {
&aux_var_set,
const std::unordered_map<std::string, std::string> &fused_vars_name)
const;
void RunInitOps(const std::vector<platform::Place> &places,
const std::vector<Scope *> &local_scopes,
const BlockDesc &global_block) const;
void InitVars(const std::vector<Scope *> &local_scopes,
const std::string &fused_var_name) const;
};
} // namespace details

@ -24,7 +24,7 @@ namespace details {
const std::string FuseSgdOpPass::GetOpType() const { return "sgd"; }
const std::vector<std::string> FuseSgdOpPass::GetAuxiliaryVarNames() const {
return {"Param"};
return {};
}
void FuseSgdOpPass::FuseOptimizerOps(
@ -50,12 +50,12 @@ void FuseSgdOpPass::FuseSgdOps(
// Add fused scale
OpDesc Sgd_desc(sgd_ops[0]->Op()->Block());
Sgd_desc.SetType("sgd");
Sgd_desc.SetInput("Param", {fused_vars_name.at("Param")});
Sgd_desc.SetInput("Grad", {fused_vars_name.at("Grad")});
Sgd_desc.SetOutput("ParamOut", {fused_vars_name.at("Param")});
Sgd_desc.SetInput(kParam, {fused_vars_name.at(kParam)});
Sgd_desc.SetInput(kGrad, {fused_vars_name.at(kGrad)});
Sgd_desc.SetOutput("ParamOut", {fused_vars_name.at(kParam)});
// TODO(zcd): The LearningRate, Beta1Pow, Beta2Pow should be equal.
Sgd_desc.SetInput("LearningRate", sgd_ops[0]->Op()->Input("LearningRate"));
Sgd_desc.SetInput(kLearningRate, sgd_ops[0]->Op()->Input(kLearningRate));
// NOTE: multi_devices_pass requires that every op should have a role.
Sgd_desc.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), op_role);

@ -106,7 +106,7 @@ ParallelSSAGraphExecutor::ParallelSSAGraphExecutor(
VLOG(1) << "set num_threads: " << strategy_.num_threads_
<< " to run the operators of the graph on each device.";
for (size_t i = 0; i < places.size(); ++i) {
executors_.emplace_back(new details::ThreadedSSAGraphExecutor(
executors_.emplace_back(new details::FastThreadedSSAGraphExecutor(
strategy_, local_scopes_, {places_[i]}, graphs_.at(i).get()));
}
}

@ -14,12 +14,12 @@
#pragma once
#include <memory>
#include <string>
#include <vector>
#include "ThreadPool.h"
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/ir/graph.h"
namespace paddle {
@ -48,7 +48,8 @@ class ParallelSSAGraphExecutor : public SSAGraphExecutor {
std::vector<platform::Place> places_;
std::vector<std::unique_ptr<ir::Graph>> graphs_;
std::vector<std::unique_ptr<details::ThreadedSSAGraphExecutor>> executors_;
std::vector<std::unique_ptr<details::FastThreadedSSAGraphExecutor>>
executors_;
ExceptionHolder exception_holder_;
};

@ -45,12 +45,16 @@ class InferVarTypeContext {
virtual bool HasInput(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(op_);
return op_->Inputs().count(name) > 0;
auto& inputs = op_->Inputs();
auto input = inputs.find(name);
return input != inputs.end() && !input->second.empty();
}
virtual bool HasOutput(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(op_);
return op_->Outputs().count(name) > 0;
auto& outputs = op_->Outputs();
auto output = outputs.find(name);
return output != outputs.end() && !output->second.empty();
}
virtual const std::vector<std::string>& Input(const std::string& name) const {

@ -832,6 +832,45 @@ std::string AnalysisPredictor::GetSerializedProgram() const {
return inference_program_->Proto()->SerializeAsString();
}
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
// save model
std::string model_name = dir + "/model";
std::ofstream outfile;
outfile.open(model_name, std::ios::out | std::ios::binary);
std::string inference_prog_desc = GetSerializedProgram();
outfile << inference_prog_desc;
// save params
framework::ProgramDesc save_program;
auto *save_block = save_program.MutableBlock(0);
const framework::ProgramDesc &main_program = program();
const framework::BlockDesc &global_block = main_program.Block(0);
std::vector<std::string> save_var_list;
for (framework::VarDesc *var : global_block.AllVars()) {
if (IsPersistable(var)) {
framework::VarDesc *new_var = save_block->Var(var->Name());
new_var->SetShape(var->GetShape());
new_var->SetDataType(var->GetDataType());
new_var->SetType(var->GetType());
new_var->SetLoDLevel(var->GetLoDLevel());
new_var->SetPersistable(true);
save_var_list.push_back(new_var->Name());
}
}
std::sort(save_var_list.begin(), save_var_list.end());
auto *op = save_block->AppendOp();
op->SetType("save_combine");
op->SetInput("X", save_var_list);
op->SetAttr("file_path", dir + "/params");
op->CheckAttrs();
platform::CPUPlace place;
framework::Executor exe(place);
exe.Run(save_program, scope(), 0, true, true);
}
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
const AnalysisConfig &config) {

@ -86,6 +86,10 @@ class AnalysisPredictor : public PaddlePredictor {
bool MkldnnQuantize();
// save program to model
// save parameters to params
void SaveOptimModel(const std::string &dir);
protected:
// For memory optimization.
bool need_collect_var_shapes_for_memory_optim();

@ -196,6 +196,9 @@ TEST(AnalysisPredictor, Clone) {
}
}
// This function is not released yet, will fail on some machine.
// TODO(Superjomn) Turn on it latter.
/*
TEST(AnalysisPredictor, memory_optim) {
AnalysisConfig config(FLAGS_dirname);
config.DisableGpu();
@ -246,6 +249,7 @@ TEST(AnalysisPredictor, memory_optim) {
inference::CompareResult(output, output1);
}
*/
#ifdef PADDLE_WITH_MKLDNN
class MkldnnQuantizerTest : public testing::Test {

@ -170,6 +170,15 @@ void SetConfig(AnalysisConfig *cfg) {
cfg->SwitchIrOptim(true);
}
void SetOptimConfig(AnalysisConfig *cfg) {
std::string optimModelPath =
FLAGS_infer_model.substr(0, FLAGS_infer_model.find_last_of("/")) +
"/saved_optim_model";
cfg->SetModel(optimModelPath + "/model", optimModelPath + "/params");
cfg->SwitchIrOptim(true);
cfg->SwitchSpecifyInputNames();
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
std::vector<PaddleTensor> input_slots;
@ -315,5 +324,44 @@ TEST(Analyzer_dam, compare_determine) {
input_slots_all);
}
// Save optim model
TEST(Analyzer_dam, save_optim_model) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::string optimModelPath =
FLAGS_infer_model.substr(0, FLAGS_infer_model.find_last_of("/")) +
"/saved_optim_model";
mkdir(optimModelPath.c_str(), 0777);
auto predictor = CreateTestPredictor(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
FLAGS_use_analysis);
(static_cast<AnalysisPredictor *>(predictor.get()))
->SaveOptimModel(optimModelPath);
}
void CompareOptimAndOrig(const PaddlePredictor::Config *orig_config,
const PaddlePredictor::Config *optim_config,
const std::vector<std::vector<PaddleTensor>> &inputs) {
PrintConfig(orig_config, true);
PrintConfig(optim_config, true);
std::vector<std::vector<PaddleTensor>> orig_outputs, optim_outputs;
TestOneThreadPrediction(orig_config, inputs, &orig_outputs, false);
TestOneThreadPrediction(optim_config, inputs, &optim_outputs, false);
CompareResult(orig_outputs.back(), optim_outputs.back());
}
TEST(Analyzer_dam, compare_optim_orig) {
AnalysisConfig orig_cfg;
AnalysisConfig optim_cfg;
SetConfig(&orig_cfg);
SetOptimConfig(&optim_cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareOptimAndOrig(
reinterpret_cast<const PaddlePredictor::Config *>(&orig_cfg),
reinterpret_cast<const PaddlePredictor::Config *>(&optim_cfg),
input_slots_all);
}
} // namespace inference
} // namespace paddle

@ -32,6 +32,17 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
SetFakeImageInput(inputs, FLAGS_infer_model);
}
void SetOptimConfig(AnalysisConfig *cfg) {
std::string optimModelPath =
FLAGS_infer_model.substr(0, FLAGS_infer_model.find_last_of("/")) +
"/saved_optim_model";
cfg->SetModel(optimModelPath + "/model", optimModelPath + "/params");
cfg->DisableGpu();
cfg->SwitchIrOptim();
cfg->SwitchSpecifyInputNames();
cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
}
// Easy for profiling independently.
void profile(bool use_mkldnn = false) {
AnalysisConfig cfg;
@ -87,13 +98,51 @@ TEST(Analyzer_resnet50, compare_mkldnn) { compare(true /* use_mkldnn */); }
TEST(Analyzer_resnet50, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
// Save optim model
TEST(Analyzer_resnet50, save_optim_model) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::string optimModelPath =
FLAGS_infer_model.substr(0, FLAGS_infer_model.find_last_of("/")) +
"/saved_optim_model";
mkdir(optimModelPath.c_str(), 0777);
auto predictor = CreateTestPredictor(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
FLAGS_use_analysis);
(static_cast<AnalysisPredictor *>(predictor.get()))
->SaveOptimModel(optimModelPath);
}
void CompareOptimAndOrig(const PaddlePredictor::Config *orig_config,
const PaddlePredictor::Config *optim_config,
const std::vector<std::vector<PaddleTensor>> &inputs) {
PrintConfig(orig_config, true);
PrintConfig(optim_config, true);
std::vector<std::vector<PaddleTensor>> orig_outputs, optim_outputs;
TestOneThreadPrediction(orig_config, inputs, &orig_outputs, false);
TestOneThreadPrediction(optim_config, inputs, &optim_outputs, false);
CompareResult(orig_outputs.back(), optim_outputs.back());
}
TEST(Analyzer_resnet50, compare_optim_orig) {
AnalysisConfig orig_cfg;
AnalysisConfig optim_cfg;
SetConfig(&orig_cfg);
SetOptimConfig(&optim_cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareOptimAndOrig(
reinterpret_cast<const PaddlePredictor::Config *>(&orig_cfg),
reinterpret_cast<const PaddlePredictor::Config *>(&optim_cfg),
input_slots_all);
}
} // namespace analysis
} // namespace inference
} // namespace paddle

@ -18,7 +18,6 @@ gru
hierarchical_sigmoid
lrn
lstm_unit
lstmp
max_pool2d_with_index
max_pool3d_with_index
maxout
@ -29,8 +28,6 @@ pool3d
prelu
quantize
rank_loss
reduce_all
reduce_any
reduce_max
reduce_mean
reduce_min

@ -121,9 +121,11 @@ class AffineGridOpKernel : public framework::OpKernel<T> {
// TODO(wanghaoshuang): Refine batched matrix multiply
auto blas = math::GetBlas<DeviceContext, T>(ctx);
for (int i = 0; i < n; ++i) {
Tensor sliced_grid = grid.Slice(i, i + 1).Resize({h * w, 3});
Tensor sliced_grid = grid.Slice(i, i + 1).Resize(
{static_cast<int64_t>(h) * static_cast<int64_t>(w), 3});
Tensor sliced_theta = theta->Slice(i, i + 1).Resize({2, 3});
Tensor sliced_out = output->Slice(i, i + 1).Resize({h * w, 2});
Tensor sliced_out = output->Slice(i, i + 1).Resize(
{static_cast<int64_t>(h) * static_cast<int64_t>(w), 2});
blas.MatMul(sliced_grid, false, sliced_theta, true, T(1), &sliced_out,
T(0));
}
@ -161,8 +163,10 @@ class AffineGridGradOpKernel : public framework::OpKernel<T> {
// TODO(wanghaoshuang): Refine batched matrix multiply
auto blas = math::GetBlas<DeviceContext, T>(ctx);
for (int i = 0; i < n; ++i) {
Tensor sliced_grid = grid.Slice(i, i + 1).Resize({h * w, 3});
Tensor sliced_out_grad = output_grad->Slice(i, i + 1).Resize({h * w, 2});
Tensor sliced_grid = grid.Slice(i, i + 1).Resize(
{static_cast<int64_t>(h) * static_cast<int64_t>(w), 3});
Tensor sliced_out_grad = output_grad->Slice(i, i + 1).Resize(
{static_cast<int64_t>(h) * static_cast<int64_t>(w), 2});
Tensor sliced_theta_grad = theta_grad->Slice(i, i + 1).Resize({2, 3});
blas.MatMul(sliced_out_grad, true, sliced_grid, false, T(1),
&sliced_theta_grad, T(0));

@ -49,7 +49,15 @@ class ConcatOp : public framework::OperatorWithKernel {
for (size_t i = 1; i < n; i++) {
for (size_t j = 0; j < in_zero_dims_size; j++) {
if (j == axis) {
out_dims[axis] += ins[i][j];
if (ctx->IsRuntime()) {
out_dims[axis] += ins[i][j];
} else {
if (ins[i][j] == -1) {
out_dims[axis] = -1;
} else {
out_dims[axis] += ins[i][j];
}
}
} else {
if (ctx->IsRuntime()) {
// check all shape in run time

@ -36,14 +36,17 @@ class ConvShiftOp : public framework::OperatorWithKernel {
auto y_dims = ctx->GetInputDim("Y");
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
PADDLE_ENFORCE_EQ(y_dims.size(), 2, "Input(Y)'s rank should be 2.");
PADDLE_ENFORCE_EQ(x_dims[0], y_dims[0],
"The 1st dimension of Input(X) and Input(Y) should "
"be equal.");
PADDLE_ENFORCE_EQ(y_dims[1] % 2, 1,
"The 2nd dimension of Input(Y) should be odd.");
PADDLE_ENFORCE_LE(y_dims[1], x_dims[1],
"The 2nd dimension of Input(Y) should be less than or "
"equal to the 2nd dimension of Input(X).");
if (ctx->IsRuntime() || (x_dims[0] > 0 && y_dims[0] > 0))
PADDLE_ENFORCE_EQ(x_dims[0], y_dims[0],
"The 1st dimension of Input(X) and Input(Y) should "
"be equal.");
if (ctx->IsRuntime() || y_dims[1] > 0)
PADDLE_ENFORCE_EQ(y_dims[1] % 2, 1,
"The 2nd dimension of Input(Y) should be odd.");
if (ctx->IsRuntime() || (x_dims[1] > 0 && y_dims[1] > 0))
PADDLE_ENFORCE_LE(y_dims[1], x_dims[1],
"The 2nd dimension of Input(Y) should be less than or "
"equal to the 2nd dimension of Input(X).");
ctx->ShareDim("X", /*->*/ "Out");
ctx->ShareLoD("X", /*->*/ "Out");
}

@ -0,0 +1,154 @@
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/cvm_op.h"
#include <memory>
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
class CVMOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("CVM"), "Input(CVM) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");
auto x_dims = ctx->GetInputDim("X");
auto cvm_dims = ctx->GetInputDim("CVM");
PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "Input(X)'s rank should be 2.");
PADDLE_ENFORCE_EQ(cvm_dims.size(), 2UL, "Input(CVM)'s rank should be 2.");
PADDLE_ENFORCE_EQ(cvm_dims[1], 2UL,
"The 2nd dimension of "
"Input(CVM) should be 2.");
if (ctx->Attrs().Get<bool>("use_cvm")) {
ctx->SetOutputDim("Y", {x_dims[0], x_dims[1]});
} else {
ctx->SetOutputDim("Y", {x_dims[0], x_dims[1] - 2});
}
ctx->ShareLoD("X", /*->*/ "Y");
}
protected:
// Explicitly set that the data type of computation kernel of
// cvm
// is determined by its input "X".
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
platform::CPUPlace());
}
};
class CVMGradientOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("CVM"), "Input(CVM) should be not null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
"Input(Y@GRAD) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
"Output(X@GRAD) should be not null.");
auto x_dims = ctx->GetInputDim("X");
auto cvm_dims = ctx->GetInputDim("CVM");
auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
PADDLE_ENFORCE_EQ(dy_dims.size(), 2, "Input(Y@Grad)'s rank should be 2.");
PADDLE_ENFORCE_EQ(cvm_dims.size(), 2, "Input(CVM)'s rank should be 2.");
PADDLE_ENFORCE_EQ(x_dims[0], dy_dims[0],
"The 1st dimension of Input(X) and Input(Y@Grad) should "
"be equal.");
PADDLE_ENFORCE_EQ(cvm_dims[1], 2,
"When Attr(soft_label) == false, the 2nd dimension of "
"Input(CVM) should be 2.");
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
ctx->ShareLoD("X", framework::GradVarName("X"));
}
protected:
// Explicitly set that the data type of computation kernel of
// cvm
// is determined by its input "X".
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
platform::CPUPlace());
}
};
class CVMOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(LodTensor, default LodTensor<float>), a 2-D tensor with shape "
"[N x D],"
" where N is the batch size and D is the emebdding dim. ");
AddInput("CVM",
"(Tensor), a 2-D Tensor with shape [N x 2], where N is the batch "
"size, 2 is show and click.");
AddOutput("Y",
"(LodTensor, default LodTensor<float>), a 2-D tensor with shape "
"[N x K].");
AddAttr<bool>("use_cvm", "bool, use cvm or not").SetDefault(true);
AddComment(R"DOC(
CVM Operator.
We assume that input X is a embedding vector with cvm_feature(show and click), which shape is [N * D] (D is 2(cvm_feature) + embedding dim, N is batch_size)
if use_cvm is True, we will log(cvm_feature), and output shape is [N * D].
if use_cvm is False, we will remove cvm_feature from input, and output shape is [N * (D - 2)].
)DOC");
}
};
class CVMGradOpDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("cvm_grad");
op->SetInput("X", Input("X"));
op->SetInput("CVM", Input("CVM"));
op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(cvm, ops::CVMOp, ops::CVMOpMaker, ops::CVMGradOpDescMaker);
REGISTER_OPERATOR(cvm_grad, ops::CVMGradientOp);
REGISTER_OP_CPU_KERNEL(cvm, ops::CVMOpKernel<float>, ops::CVMOpKernel<double>);
REGISTER_OP_CPU_KERNEL(cvm_grad, ops::CVMGradOpKernel<float>,
ops::CVMGradOpKernel<double>);

@ -0,0 +1,105 @@
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T>
class CVMOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const LoDTensor* x = context.Input<LoDTensor>("X");
const T* x_data = x->data<T>();
auto lod = x->lod()[0];
int64_t item_size = x->numel() / x->dims()[0];
int offset = 2;
if (!context.Attr<bool>("use_cvm")) {
item_size -= offset;
}
LoDTensor* y = context.Output<LoDTensor>("Y");
T* y_data = y->mutable_data<T>(context.GetPlace());
int seq_num = static_cast<int>(lod.size()) - 1;
for (int i = 0; i < seq_num; ++i) {
int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
for (int j = 0; j < seq_len; ++j) {
if (context.Attr<bool>("use_cvm")) {
std::memcpy(y_data, x_data, item_size * sizeof(T));
y_data[0] = log(y_data[0] + 1);
y_data[1] = log(y_data[1] + 1) - y_data[0];
x_data += item_size;
y_data += item_size;
} else {
std::memcpy(y_data, x_data + offset, item_size * sizeof(T));
x_data += item_size + offset;
y_data += item_size;
}
}
}
}
};
template <typename T>
class CVMGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
LoDTensor* dx = context.Output<LoDTensor>(framework::GradVarName("X"));
T* dx_data = dx->mutable_data<T>(context.GetPlace());
const Tensor* cvm = context.Input<Tensor>("CVM");
const T* cvm_data = cvm->data<T>();
int offset = 2;
const framework::LoDTensor* dOut =
context.Input<framework::LoDTensor>(framework::GradVarName("Y"));
const T* dout_data = dOut->data<T>();
auto lod = dx->lod()[0];
int64_t item_size = dx->numel() / dx->dims()[0];
if (!context.Attr<bool>("use_cvm")) {
item_size -= offset;
}
int seq_num = static_cast<int>(lod.size()) - 1;
for (int i = 0; i < seq_num; ++i) {
int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
for (int j = 0; j < seq_len; ++j) {
if (context.Attr<bool>("use_cvm")) {
std::memcpy(dx_data, dout_data, item_size * sizeof(T));
dx_data[0] = cvm_data[0];
dx_data[1] = cvm_data[1];
dx_data += item_size;
dout_data += item_size;
} else {
std::memcpy(dx_data + offset, dout_data, item_size * sizeof(T));
dx_data[0] = cvm_data[0];
dx_data[1] = cvm_data[1];
dx_data += item_size + offset;
dout_data += item_size;
}
}
cvm_data += offset;
}
}
};
} // namespace operators
} // namespace paddle

@ -9,6 +9,9 @@ else()
endif()
configure_file(send_recv.proto.in ${CMAKE_CURRENT_SOURCE_DIR}/send_recv.proto @ONLY)
cc_library(async_sparse_param_update_recorder SRCS async_sparse_param_update_recorder.cc DEPS enforce simple_threadpool)
cc_test(async_sparse_param_update_recorder_test SRCS async_sparse_param_update_recorder_test.cc DEPS async_sparse_param_update_recorder)
# FIXME(typhoonzero): use add_subdirectory once we clean the dependency of these files
set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor")
if(WITH_GRPC)
@ -20,7 +23,7 @@ if(WITH_GRPC)
collective_client.cc collective_server.cc
${GRPC_SRCS}
PROTO send_recv.proto
DEPS lod_tensor selected_rows_functor memory scope ${GRPC_DEPS})
DEPS lod_tensor selected_rows_functor memory scope ${GRPC_DEPS} async_sparse_param_update_recorder)
set_source_files_properties(grpc_serde_test.cc rpc_server_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
set(RPC_DEPS sendrecvop_rpc ${GRPC_DEPS})

@ -0,0 +1,27 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/distributed/async_sparse_param_update_recorder.h"
namespace paddle {
namespace operators {
namespace distributed {
std::once_flag AsyncSparseParamUpdateRecorder::init_flag_;
std::unique_ptr<AsyncSparseParamUpdateRecorder>
AsyncSparseParamUpdateRecorder::recorder_(nullptr);
} // namespace distributed
} // namespace operators
} // namespace paddle

@ -0,0 +1,183 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <functional>
#include <future> // NOLINT
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include <ThreadPool.h>
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace operators {
namespace distributed {
class ConcurrentSet {
public:
ConcurrentSet() : pool_(new ::ThreadPool(1)) {}
~ConcurrentSet() {}
std::future<void> Update(const std::vector<int64_t>& rows) {
auto task = [this, rows] {
if (VLOG_IS_ON(3)) {
std::ostringstream sstream;
sstream << "[";
for (auto& id : rows) {
sstream << id << ", ";
}
sstream << "]";
VLOG(3) << "update ids -> " << sstream.str();
}
for (auto row : rows) {
set_.insert(row);
}
};
return pool_->enqueue(std::move(task));
}
std::future<void> GetAndClear(std::vector<int64_t>* result) {
auto task = [this, &result] {
result->clear();
for (auto& id : set_) {
result->push_back(id);
}
if (VLOG_IS_ON(3)) {
std::ostringstream sstream;
sstream << "[";
for (auto& id : *result) {
sstream << id << ", ";
}
sstream << "]";
VLOG(3) << "result ids size: " << result->size() << " "
<< sstream.str();
}
set_.clear();
};
return pool_->enqueue(std::move(task));
}
private:
std::unordered_set<int64_t> set_;
std::unique_ptr<::ThreadPool> pool_{nullptr};
};
class AsyncSparseParamUpdateRecorder {
using TrainerToRows = std::vector<std::unique_ptr<ConcurrentSet>>;
public:
AsyncSparseParamUpdateRecorder(
int trainer_num,
const std::unordered_map<std::string, std::string>& grad_to_param)
: trainer_num_(trainer_num), grad_to_param_(grad_to_param) {
if (VLOG_IS_ON(3)) {
std::ostringstream sstream;
sstream << "[";
for (auto& item : grad_to_param) {
sstream << item.first << ":" << item.second << ", ";
}
sstream << "]";
VLOG(3) << "trainer_num: " << trainer_num
<< " grad_to_param_: " << sstream.str();
}
for (auto& iter : grad_to_param) {
param_to_grad_[iter.second] = iter.first;
auto& param_name = iter.second;
param_to_updated_rows_[param_name] = TrainerToRows();
auto& trainer_to_rows = param_to_updated_rows_[param_name];
for (auto i = 0; i < trainer_num; ++i) {
trainer_to_rows.emplace_back(new ConcurrentSet());
}
}
}
~AsyncSparseParamUpdateRecorder() = default;
void Update(const std::string& grad_name,
const std::vector<int64_t>& update_rows) {
VLOG(3) << "update grad: " << grad_name
<< " row size: " << update_rows.size();
auto& param_name = grad_to_param_.at(grad_name);
auto& trainer_to_rows = param_to_updated_rows_.at(param_name);
std::vector<std::future<void>> fs;
for (auto& set : trainer_to_rows) {
fs.push_back(set->Update(update_rows));
}
for (auto& f : fs) {
f.wait();
}
}
void GetAndClear(const std::string& param_name, int trainer_id,
std::vector<int64_t>* result) {
VLOG(3) << "GetAndClear param: " << param_name
<< " for trainer: " << trainer_id;
PADDLE_ENFORCE_LT(trainer_id, trainer_num_);
param_to_updated_rows_.at(param_name)[trainer_id]
->GetAndClear(result)
.wait();
}
bool HasParam(const std::string& param_name) {
return param_to_grad_.find(param_name) != param_to_grad_.end();
}
bool HasGrad(const std::string& grad_name) {
return grad_to_param_.find(grad_name) != grad_to_param_.end();
}
private:
const int trainer_num_;
std::unordered_map<std::string, std::string> grad_to_param_;
std::unordered_map<std::string, std::string> param_to_grad_;
std::unordered_map<std::string, TrainerToRows> param_to_updated_rows_;
// init recorder
public:
static void Init(
int trainer_num,
const std::unordered_map<std::string, std::string>& grad_to_param) {
InitImpl(trainer_num, grad_to_param);
}
static AsyncSparseParamUpdateRecorder* GetInstance() {
return recorder_.get();
}
private:
// Init is called by GetInstance.
static void InitImpl(
int trainer_num,
const std::unordered_map<std::string, std::string>& grad_to_param) {
if (recorder_ == nullptr) {
recorder_.reset(
new AsyncSparseParamUpdateRecorder(trainer_num, grad_to_param));
}
}
static std::once_flag init_flag_;
static std::unique_ptr<AsyncSparseParamUpdateRecorder> recorder_;
};
} // namespace distributed
} // namespace operators
} // namespace paddle

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save