parent
defdc5fe3d
commit
76941d90b1
@ -0,0 +1,152 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "LayerGradUtil.h"
|
||||
#include "paddle/math/MathUtils.h"
|
||||
#include "paddle/testing/TestUtil.h"
|
||||
|
||||
using namespace paddle;
|
||||
|
||||
void setPoolConfig(TestConfig* config,
|
||||
PoolConfig* pool,
|
||||
const string& poolType) {
|
||||
(*config).biasSize = 0;
|
||||
(*config).layerConfig.set_type("pool");
|
||||
(*config).layerConfig.set_num_filters(1);
|
||||
|
||||
int kw = 2, kh = 2;
|
||||
int pw = 0, ph = 0;
|
||||
int sw = 2, sh = 2;
|
||||
pool->set_pool_type(poolType);
|
||||
pool->set_channels(2);
|
||||
pool->set_size_x(kw);
|
||||
pool->set_size_y(kh);
|
||||
pool->set_start(0);
|
||||
pool->set_padding(pw);
|
||||
pool->set_padding_y(ph);
|
||||
pool->set_stride(sw);
|
||||
pool->set_stride_y(sh);
|
||||
|
||||
int ow = outputSize(pool->img_size(), kw, pw, sw, /* caffeMode */ false);
|
||||
int oh = outputSize(pool->img_size_y(), kh, ph, sh, /* caffeMode */ false);
|
||||
pool->set_output_x(ow);
|
||||
pool->set_output_y(oh);
|
||||
}
|
||||
|
||||
LayerPtr doOneUpsampleTest(MatrixPtr& inputMat,
|
||||
const string& poolType,
|
||||
bool use_gpu,
|
||||
real* tempGradData) {
|
||||
/* prepare maxPoolWithMaskLayer */
|
||||
TestConfig config;
|
||||
config.inputDefs.push_back({INPUT_DATA, "layer_0", 128, 0});
|
||||
LayerInputConfig* input = config.layerConfig.add_inputs();
|
||||
PoolConfig* pool = input->mutable_pool_conf();
|
||||
|
||||
pool->set_img_size(8);
|
||||
pool->set_img_size_y(8);
|
||||
setPoolConfig(&config, pool, "max-pool-with-mask");
|
||||
config.layerConfig.set_size(pool->output_x() * pool->output_y() *
|
||||
pool->channels());
|
||||
|
||||
config.layerConfig.set_name("MaxPoolWithMask");
|
||||
|
||||
std::vector<DataLayerPtr> dataLayers;
|
||||
LayerMap layerMap;
|
||||
vector<Argument> datas;
|
||||
|
||||
initDataLayer(config,
|
||||
&dataLayers,
|
||||
&datas,
|
||||
&layerMap,
|
||||
"MaxPoolWithMask",
|
||||
1,
|
||||
false,
|
||||
use_gpu);
|
||||
|
||||
dataLayers[0]->getOutputValue()->copyFrom(*inputMat);
|
||||
|
||||
FLAGS_use_gpu = use_gpu;
|
||||
std::vector<ParameterPtr> parameters;
|
||||
LayerPtr maxPoolingWithMaskOutputLayer;
|
||||
initTestLayer(config, &layerMap, ¶meters, &maxPoolingWithMaskOutputLayer);
|
||||
maxPoolingWithMaskOutputLayer->forward(PASS_GC);
|
||||
|
||||
/* prepare the upsample layer */
|
||||
LayerConfig upsampleLayerConfig;
|
||||
upsampleLayerConfig.set_type("upsample");
|
||||
LayerInputConfig* input1 = upsampleLayerConfig.add_inputs();
|
||||
upsampleLayerConfig.add_inputs();
|
||||
|
||||
UpsampleConfig* upsampleConfig = input1->mutable_upsample_conf();
|
||||
upsampleConfig->set_scale(2);
|
||||
ImageConfig* imageConfig = upsampleConfig->mutable_image_conf();
|
||||
imageConfig->set_channels(2);
|
||||
imageConfig->set_img_size(4);
|
||||
imageConfig->set_img_size_y(4);
|
||||
upsampleLayerConfig.set_size(2 * 8 * 8);
|
||||
upsampleLayerConfig.set_name("upsample");
|
||||
|
||||
for (size_t i = 0; i < 2; i++) {
|
||||
LayerInputConfig& inputTemp = *(upsampleLayerConfig.mutable_inputs(i));
|
||||
inputTemp.set_input_layer_name("MaxPoolWithMask");
|
||||
}
|
||||
|
||||
LayerPtr upsampleLayer;
|
||||
ParameterMap parameterMap;
|
||||
upsampleLayer = Layer::create(upsampleLayerConfig);
|
||||
layerMap[upsampleLayerConfig.name()] = upsampleLayer;
|
||||
upsampleLayer->init(layerMap, parameterMap);
|
||||
upsampleLayer->setNeedGradient(true);
|
||||
upsampleLayer->forward(PASS_GC);
|
||||
upsampleLayer->getOutputGrad()->copyFrom(tempGradData, 128);
|
||||
upsampleLayer->backward();
|
||||
|
||||
return upsampleLayer;
|
||||
}
|
||||
|
||||
TEST(Layer, maxPoolingWithMaskOutputLayerFwd) {
|
||||
bool useGpu = false;
|
||||
MatrixPtr inputMat;
|
||||
MatrixPtr inputGPUMat;
|
||||
MatrixPtr tempGradMat;
|
||||
|
||||
inputMat = Matrix::create(1, 128, false, useGpu);
|
||||
inputMat->randomizeUniform();
|
||||
|
||||
tempGradMat = Matrix::create(1, 128, false, useGpu);
|
||||
tempGradMat->randomizeUniform();
|
||||
real* data = inputMat->getData();
|
||||
real* tempGradData = tempGradMat->getData();
|
||||
|
||||
LayerPtr upsampleLayerCPU =
|
||||
doOneUpsampleTest(inputMat, "max-pool-with-mask", useGpu, tempGradData);
|
||||
|
||||
#ifdef PADDLE_WITH_CUDA
|
||||
useGpu = true;
|
||||
inputGPUMat = Matrix::create(1, 128, false, useGpu);
|
||||
inputGPUMat->copyFrom(data, 128);
|
||||
LayerPtr upsampleLayerGPU = doOneUpsampleTest(
|
||||
inputGPUMat, "max-pool-with-mask", useGpu, tempGradData);
|
||||
checkMatrixEqual(upsampleLayerCPU->getOutput("").value,
|
||||
upsampleLayerGPU->getOutput("").value);
|
||||
|
||||
checkMatrixEqual(upsampleLayerCPU->getPrev(0)->getOutputGrad(),
|
||||
upsampleLayerGPU->getPrev(0)->getOutputGrad());
|
||||
#endif
|
||||
}
|
Loading…
Reference in new issue