parent
46e60761d1
commit
76f1fd18f9
@ -0,0 +1,10 @@
|
||||
data/raw_data
|
||||
data/*.list
|
||||
mnist_vgg_model
|
||||
plot.png
|
||||
train.log
|
||||
*pyc
|
||||
.ipynb_checkpoints
|
||||
params.pkl
|
||||
params.tar
|
||||
params.tar.gz
|
@ -0,0 +1,196 @@
|
||||
"""
|
||||
A very basic example for how to use current Raw SWIG API to train mnist network.
|
||||
|
||||
Current implementation uses Raw SWIG, which means the API call is directly \
|
||||
passed to C++ side of Paddle.
|
||||
|
||||
The user api could be simpler and carefully designed.
|
||||
"""
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import paddle.v2 as paddle_v2
|
||||
import py_paddle.swig_paddle as api
|
||||
from paddle.trainer_config_helpers import *
|
||||
from py_paddle import DataProviderConverter
|
||||
|
||||
from mnist_util import read_from_mnist
|
||||
|
||||
|
||||
def init_parameter(network):
|
||||
assert isinstance(network, api.GradientMachine)
|
||||
for each_param in network.getParameters():
|
||||
assert isinstance(each_param, api.Parameter)
|
||||
array_size = len(each_param)
|
||||
array = np.random.uniform(-1.0, 1.0, array_size).astype('float32')
|
||||
each_param.getBuf(api.PARAMETER_VALUE).copyFromNumpyArray(array)
|
||||
|
||||
|
||||
def generator_to_batch(generator, batch_size):
|
||||
ret_val = list()
|
||||
for each_item in generator:
|
||||
ret_val.append(each_item)
|
||||
if len(ret_val) == batch_size:
|
||||
yield ret_val
|
||||
ret_val = list()
|
||||
if len(ret_val) != 0:
|
||||
yield ret_val
|
||||
|
||||
|
||||
class BatchPool(object):
|
||||
def __init__(self, generator, batch_size):
|
||||
self.data = list(generator)
|
||||
self.batch_size = batch_size
|
||||
|
||||
def __call__(self):
|
||||
random.shuffle(self.data)
|
||||
for offset in xrange(0, len(self.data), self.batch_size):
|
||||
limit = min(offset + self.batch_size, len(self.data))
|
||||
yield self.data[offset:limit]
|
||||
|
||||
|
||||
def input_order_converter(generator):
|
||||
for each_item in generator:
|
||||
yield each_item['pixel'], each_item['label']
|
||||
|
||||
|
||||
def main():
|
||||
api.initPaddle("-use_gpu=false", "-trainer_count=4") # use 4 cpu cores
|
||||
|
||||
optimizer = paddle_v2.optimizer.Adam(
|
||||
learning_rate=1e-4,
|
||||
batch_size=1000,
|
||||
model_average=ModelAverage(average_window=0.5),
|
||||
regularization=L2Regularization(rate=0.5))
|
||||
|
||||
# Create Local Updater. Local means not run in cluster.
|
||||
# For a cluster training, here we can change to createRemoteUpdater
|
||||
# in future.
|
||||
updater = optimizer.create_local_updater()
|
||||
assert isinstance(updater, api.ParameterUpdater)
|
||||
|
||||
# define network
|
||||
images = paddle_v2.layer.data(
|
||||
name='pixel', type=paddle_v2.data_type.dense_vector(784))
|
||||
label = paddle_v2.layer.data(
|
||||
name='label', type=paddle_v2.data_type.integer_value(10))
|
||||
hidden1 = paddle_v2.layer.fc(input=images, size=200)
|
||||
hidden2 = paddle_v2.layer.fc(input=hidden1, size=200)
|
||||
inference = paddle_v2.layer.fc(input=hidden2,
|
||||
size=10,
|
||||
act=paddle_v2.activation.Softmax())
|
||||
cost = paddle_v2.layer.classification_cost(input=inference, label=label)
|
||||
|
||||
# Create Simple Gradient Machine.
|
||||
model_config = paddle_v2.layer.parse_network(cost)
|
||||
m = api.GradientMachine.createFromConfigProto(model_config,
|
||||
api.CREATE_MODE_NORMAL,
|
||||
optimizer.enable_types())
|
||||
|
||||
# This type check is not useful. Only enable type hint in IDE.
|
||||
# Such as PyCharm
|
||||
assert isinstance(m, api.GradientMachine)
|
||||
|
||||
# Initialize Parameter by numpy.
|
||||
init_parameter(network=m)
|
||||
|
||||
# Initialize ParameterUpdater.
|
||||
updater.init(m)
|
||||
|
||||
# DataProvider Converter is a utility convert Python Object to Paddle C++
|
||||
# Input. The input format is as same as Paddle's DataProvider.
|
||||
converter = DataProviderConverter(input_types=[images.type, label.type])
|
||||
|
||||
train_file = './data/raw_data/train'
|
||||
test_file = './data/raw_data/t10k'
|
||||
|
||||
# start gradient machine.
|
||||
# the gradient machine must be started before invoke forward/backward.
|
||||
# not just for training, but also for inference.
|
||||
m.start()
|
||||
|
||||
# evaluator can print error rate, etc. It is a C++ class.
|
||||
batch_evaluator = m.makeEvaluator()
|
||||
test_evaluator = m.makeEvaluator()
|
||||
|
||||
# Get Train Data.
|
||||
# TrainData will stored in a data pool. Currently implementation is not care
|
||||
# about memory, speed. Just a very naive implementation.
|
||||
train_data_generator = input_order_converter(read_from_mnist(train_file))
|
||||
train_data = BatchPool(train_data_generator, 512)
|
||||
|
||||
# outArgs is Neural Network forward result. Here is not useful, just passed
|
||||
# to gradient_machine.forward
|
||||
outArgs = api.Arguments.createArguments(0)
|
||||
|
||||
for pass_id in xrange(2): # we train 2 passes.
|
||||
updater.startPass()
|
||||
|
||||
for batch_id, data_batch in enumerate(train_data()):
|
||||
# data_batch is input images.
|
||||
# here, for online learning, we could get data_batch from network.
|
||||
|
||||
# Start update one batch.
|
||||
pass_type = updater.startBatch(len(data_batch))
|
||||
|
||||
# Start BatchEvaluator.
|
||||
# batch_evaluator can be used between start/finish.
|
||||
batch_evaluator.start()
|
||||
|
||||
# forwardBackward is a shortcut for forward and backward.
|
||||
# It is sometimes faster than invoke forward/backward separately,
|
||||
# because in GradientMachine, it may be async.
|
||||
m.forwardBackward(converter(data_batch), outArgs, pass_type)
|
||||
|
||||
for each_param in m.getParameters():
|
||||
updater.update(each_param)
|
||||
|
||||
# Get cost. We use numpy to calculate total cost for this batch.
|
||||
cost_vec = outArgs.getSlotValue(0)
|
||||
cost_vec = cost_vec.copyToNumpyMat()
|
||||
cost = cost_vec.sum() / len(data_batch)
|
||||
|
||||
# Make evaluator works.
|
||||
m.eval(batch_evaluator)
|
||||
|
||||
# Print logs.
|
||||
print 'Pass id', pass_id, 'Batch id', batch_id, 'with cost=', \
|
||||
cost, batch_evaluator
|
||||
|
||||
batch_evaluator.finish()
|
||||
# Finish batch.
|
||||
# * will clear gradient.
|
||||
# * ensure all values should be updated.
|
||||
updater.finishBatch(cost)
|
||||
|
||||
# testing stage. use test data set to test current network.
|
||||
updater.apply()
|
||||
test_evaluator.start()
|
||||
test_data_generator = input_order_converter(read_from_mnist(test_file))
|
||||
for data_batch in generator_to_batch(test_data_generator, 512):
|
||||
# in testing stage, only forward is needed.
|
||||
m.forward(converter(data_batch), outArgs, api.PASS_TEST)
|
||||
m.eval(test_evaluator)
|
||||
|
||||
# print error rate for test data set
|
||||
print 'Pass', pass_id, ' test evaluator: ', test_evaluator
|
||||
test_evaluator.finish()
|
||||
updater.restore()
|
||||
|
||||
updater.catchUpWith()
|
||||
params = m.getParameters()
|
||||
for each_param in params:
|
||||
assert isinstance(each_param, api.Parameter)
|
||||
value = each_param.getBuf(api.PARAMETER_VALUE)
|
||||
value = value.copyToNumpyArray()
|
||||
|
||||
# Here, we could save parameter to every where you want
|
||||
print each_param.getName(), value
|
||||
|
||||
updater.finishPass()
|
||||
|
||||
m.finish()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -0,0 +1,21 @@
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
o = open("./" + "train.list", "w")
|
||||
o.write("./data/raw_data/train" + "\n")
|
||||
o.close()
|
||||
|
||||
o = open("./" + "test.list", "w")
|
||||
o.write("./data/raw_data/t10k" + "\n")
|
||||
o.close()
|
@ -0,0 +1,21 @@
|
||||
#!/usr/bin/env sh
|
||||
# This scripts downloads the mnist data and unzips it.
|
||||
set -e
|
||||
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
|
||||
rm -rf "$DIR/raw_data"
|
||||
mkdir "$DIR/raw_data"
|
||||
cd "$DIR/raw_data"
|
||||
|
||||
echo "Downloading..."
|
||||
|
||||
for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte
|
||||
do
|
||||
if [ ! -e $fname ]; then
|
||||
wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz
|
||||
gunzip ${fname}.gz
|
||||
fi
|
||||
done
|
||||
|
||||
cd $DIR
|
||||
rm -f *.list
|
||||
python generate_list.py
|
@ -0,0 +1,79 @@
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
is_predict = get_config_arg("is_predict", bool, False)
|
||||
|
||||
####################Data Configuration ##################
|
||||
|
||||
if not is_predict:
|
||||
data_dir = './data/'
|
||||
define_py_data_sources2(
|
||||
train_list=data_dir + 'train.list',
|
||||
test_list=data_dir + 'test.list',
|
||||
module='mnist_provider',
|
||||
obj='process')
|
||||
|
||||
######################Algorithm Configuration #############
|
||||
settings(batch_size=50, learning_rate=0.001, learning_method=AdamOptimizer())
|
||||
|
||||
#######################Network Configuration #############
|
||||
|
||||
data_size = 1 * 28 * 28
|
||||
label_size = 10
|
||||
img = data_layer(name='pixel', size=data_size)
|
||||
|
||||
|
||||
# light cnn
|
||||
# A shallower cnn model: [CNN, BN, ReLU, Max-Pooling] x4 + FC x1
|
||||
# Easier to train for mnist dataset and quite efficient
|
||||
# Final performance is close to deeper ones on tasks such as digital and character classification
|
||||
def light_cnn(input_image, num_channels, num_classes):
|
||||
def __light__(ipt,
|
||||
num_filter=128,
|
||||
times=1,
|
||||
conv_filter_size=3,
|
||||
dropouts=0,
|
||||
num_channels_=None):
|
||||
return img_conv_group(
|
||||
input=ipt,
|
||||
num_channels=num_channels_,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
conv_padding=0,
|
||||
conv_num_filter=[num_filter] * times,
|
||||
conv_filter_size=conv_filter_size,
|
||||
conv_act=ReluActivation(),
|
||||
conv_with_batchnorm=True,
|
||||
conv_batchnorm_drop_rate=dropouts,
|
||||
pool_type=MaxPooling())
|
||||
|
||||
tmp = __light__(input_image, num_filter=128, num_channels_=num_channels)
|
||||
tmp = __light__(tmp, num_filter=128)
|
||||
tmp = __light__(tmp, num_filter=128)
|
||||
tmp = __light__(tmp, num_filter=128, conv_filter_size=1)
|
||||
|
||||
tmp = fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())
|
||||
return tmp
|
||||
|
||||
|
||||
predict = light_cnn(input_image=img, num_channels=1, num_classes=label_size)
|
||||
|
||||
if not is_predict:
|
||||
lbl = data_layer(name="label", size=label_size)
|
||||
inputs(img, lbl)
|
||||
outputs(classification_cost(input=predict, label=lbl))
|
||||
else:
|
||||
outputs(predict)
|
@ -0,0 +1,12 @@
|
||||
from paddle.trainer.PyDataProvider2 import *
|
||||
from mnist_util import read_from_mnist
|
||||
|
||||
|
||||
# Define a py data provider
|
||||
@provider(
|
||||
input_types={'pixel': dense_vector(28 * 28),
|
||||
'label': integer_value(10)},
|
||||
cache=CacheType.CACHE_PASS_IN_MEM)
|
||||
def process(settings, filename): # settings is not used currently.
|
||||
for each in read_from_mnist(filename):
|
||||
yield each
|
@ -0,0 +1,30 @@
|
||||
import numpy
|
||||
|
||||
__all__ = ['read_from_mnist']
|
||||
|
||||
|
||||
def read_from_mnist(filename):
|
||||
imgf = filename + "-images-idx3-ubyte"
|
||||
labelf = filename + "-labels-idx1-ubyte"
|
||||
f = open(imgf, "rb")
|
||||
l = open(labelf, "rb")
|
||||
|
||||
f.read(16)
|
||||
l.read(8)
|
||||
|
||||
# Define number of samples for train/test
|
||||
if "train" in filename:
|
||||
n = 60000
|
||||
else:
|
||||
n = 10000
|
||||
|
||||
images = numpy.fromfile(
|
||||
f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)).astype('float32')
|
||||
images = images / 255.0 * 2.0 - 1.0
|
||||
labels = numpy.fromfile(l, 'ubyte', count=n).astype("int")
|
||||
|
||||
for i in xrange(n):
|
||||
yield {"pixel": images[i, :], 'label': labels[i]}
|
||||
|
||||
f.close()
|
||||
l.close()
|
@ -0,0 +1,32 @@
|
||||
#!/bin/bash
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
set -e
|
||||
config=vgg_16_mnist.py
|
||||
output=./mnist_vgg_model
|
||||
log=train.log
|
||||
|
||||
paddle train \
|
||||
--config=$config \
|
||||
--dot_period=10 \
|
||||
--log_period=100 \
|
||||
--test_all_data_in_one_period=1 \
|
||||
--use_gpu=0 \
|
||||
--trainer_count=1 \
|
||||
--num_passes=100 \
|
||||
--save_dir=$output \
|
||||
2>&1 | tee $log
|
||||
paddle usage -l $log -e $? -n "mnist_train" >/dev/null 2>&1
|
||||
|
||||
python -m paddle.utils.plotcurve -i $log > plot.png
|
@ -0,0 +1,50 @@
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
is_predict = get_config_arg("is_predict", bool, False)
|
||||
|
||||
####################Data Configuration ##################
|
||||
|
||||
if not is_predict:
|
||||
data_dir = './data/'
|
||||
define_py_data_sources2(
|
||||
train_list=data_dir + 'train.list',
|
||||
test_list=data_dir + 'test.list',
|
||||
module='mnist_provider',
|
||||
obj='process')
|
||||
|
||||
######################Algorithm Configuration #############
|
||||
settings(
|
||||
batch_size=128,
|
||||
learning_rate=0.1 / 128.0,
|
||||
learning_method=MomentumOptimizer(0.9),
|
||||
regularization=L2Regularization(0.0005 * 128))
|
||||
|
||||
#######################Network Configuration #############
|
||||
|
||||
data_size = 1 * 28 * 28
|
||||
label_size = 10
|
||||
img = data_layer(name='pixel', size=data_size)
|
||||
|
||||
# small_vgg is predined in trainer_config_helpers.network
|
||||
predict = small_vgg(input_image=img, num_channels=1, num_classes=label_size)
|
||||
|
||||
if not is_predict:
|
||||
lbl = data_layer(name="label", size=label_size)
|
||||
inputs(img, lbl)
|
||||
outputs(classification_cost(input=predict, label=lbl))
|
||||
else:
|
||||
outputs(predict)
|
Loading…
Reference in new issue