Merge remote-tracking branch 'ups/develop' into fea/jitkernel

fix-readmd
tensor-tang 7 years ago
commit 77fc42d2d1

@ -52,6 +52,7 @@ ExternalProject_Add(
PREFIX ${ANAKIN_SOURCE_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS ${CMAKE_ARGS_PREFIX}
-DUSE_LOGGER=YES
-DUSE_X86_PLACE=YES
-DBUILD_WITH_UNIT_TEST=NO
-DPROTOBUF_ROOT=${THIRD_PARTY_PATH}/install/protobuf

@ -27,7 +27,6 @@ endfunction()
CheckCompilerCXX11Flag()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
# safe_set_flag
#
# Set a compile flag only if compiler is support
@ -71,6 +70,20 @@ macro(safe_set_nvflag flag_name)
endif()
endmacro()
macro(safe_set_static_flag) # set c_flags and cxx_flags to static or shared
if (BUILD_SHARED_LIBS)
return() # if build shared libs, the flags keep same with '/MD'
endif(BUILD_SHARED_LIBS)
foreach(flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO
CMAKE_C_FLAGS CMAKE_C_FLAGS_DEBUG CMAKE_C_FLAGS_RELEASE
CMAKE_C_FLAGS_MINSIZEREL CMAKE_C_FLAGS_RELWITHDEBINFO)
if(${flag_var} MATCHES "/MD")
string(REGEX REPLACE "/MD" "/MT" ${flag_var} "${${flag_var}}")
endif(${flag_var} MATCHES "/MD")
endforeach(flag_var)
endmacro()
CHECK_CXX_SYMBOL_EXISTS(UINT64_MAX "stdint.h" UINT64_MAX_EXISTS)
if(NOT UINT64_MAX_EXISTS)
@ -97,9 +110,13 @@ SET(CMAKE_EXTRA_INCLUDE_FILES "")
# Common flags. the compiler flag used for C/C++ sources whenever release or debug
# Do not care if this flag is support for gcc.
# https://github.com/PaddlePaddle/Paddle/issues/12773
if (NOT WIN32)
set(COMMON_FLAGS
-fPIC
-fno-omit-frame-pointer
-Werror
-Wall
-Wextra
-Wnon-virtual-dtor
@ -114,11 +131,6 @@ set(COMMON_FLAGS
-Wno-error=terminate # Warning in PADDLE_ENFORCE
)
# https://github.com/PaddlePaddle/Paddle/issues/12773
if (NOT WIN32)
list(APPEND COMMON_FLAGS -Werror)
endif()
set(GPU_COMMON_FLAGS
-fPIC
-fno-omit-frame-pointer
@ -133,30 +145,53 @@ set(GPU_COMMON_FLAGS
-Wno-error=array-bounds # Warnings in Eigen::array
)
else(NOT WIN32)
set(COMMON_FLAGS
"/w") #disable all warnings.
set(GPU_COMMON_FLAGS
"/w") #disable all warnings
endif(NOT WIN32)
if (APPLE)
if(NOT CMAKE_CROSSCOMPILING)
# On Mac OS X build fat binaries with x86_64 architectures by default.
set (CMAKE_OSX_ARCHITECTURES "x86_64" CACHE STRING "Build architectures for OSX" FORCE)
endif()
else()
endif(APPLE)
if(LINUX)
set(GPU_COMMON_FLAGS
-Wall
-Wextra
-Werror
${GPU_COMMON_FLAGS})
endif()
endif(LINUX)
if(UNIX AND NOT APPLE)
# except apple from nix*Os family
set(LINUX TRUE)
endif(UNIX AND NOT APPLE)
foreach(flag ${COMMON_FLAGS})
safe_set_cflag(CMAKE_C_FLAGS ${flag})
safe_set_cxxflag(CMAKE_CXX_FLAGS ${flag})
endforeach()
foreach(flag ${GPU_COMMON_FLAGS})
safe_set_nvflag(${flag})
endforeach()
if(WIN32)
# windows build turn off warnings.
safe_set_static_flag()
foreach(flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO
CMAKE_C_FLAGS CMAKE_C_FLAGS_DEBUG CMAKE_C_FLAGS_RELEASE
CMAKE_C_FLAGS_MINSIZEREL CMAKE_C_FLAGS_RELWITHDEBINFO)
if(${flag_var} MATCHES "/W3")
string(REGEX REPLACE "/W3" "/w" ${flag_var} "${${flag_var}}")
endif(${flag_var} MATCHES "/W3")
endforeach(flag_var)
endif(WIN32)

@ -1,11 +1,9 @@
add_custom_target(paddle_apis ALL
DEPENDS paddle_v2_apis paddle_fluid_apis)
DEPENDS paddle_v2_apis)
add_custom_target(paddle_docs ALL
DEPENDS paddle_v2_docs paddle_v2_docs_cn
paddle_fluid_docs paddle_fluid_docs_cn
paddle_mobile_docs paddle_mobile_docs_cn)
add_subdirectory(v2)
add_subdirectory(fluid)
add_subdirectory(mobile)

@ -102,8 +102,8 @@ class Float16Transpiler:
continue
for input_arg in current_op.input_arg_names:
if input_arg in self.input_map:
current_op.rename_input(input_arg,
self.input_map[input_arg])
current_op._rename_input(input_arg,
self.input_map[input_arg])
def _remove_unused_var(self):
'''
@ -187,7 +187,7 @@ class Float16Transpiler:
shape=var.shape,
persistable=var.persistable)
find_op(var)
var.op.rename_output(var_name, tmp_var_name)
var.op._rename_output(var_name, tmp_var_name)
self.block._insert_op(
i,
type="cast",

@ -6,26 +6,9 @@ paddle.fluid.Program.global_block ArgSpec(args=['self'], varargs=None, keywords=
paddle.fluid.Program.list_vars ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.parse_from_string ArgSpec(args=['binary_str'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.to_string ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.Operator.__init__ ArgSpec(args=['self', 'block', 'desc', 'type', 'inputs', 'outputs', 'attrs'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.Operator.all_attrs ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.attr_type ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.block_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.block_attr_id ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.blocks_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.blocks_attr_ids ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.has_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.has_kernel ArgSpec(args=['self', 'op_type'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.input ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.output ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.rename_input ArgSpec(args=['self', 'old_name', 'new_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.rename_output ArgSpec(args=['self', 'old_name', 'new_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.set_attr ArgSpec(args=['self', 'name', 'val'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.to_string ArgSpec(args=['self', 'throw_on_error'], varargs=None, keywords=None, defaults=None)
paddle.fluid.default_startup_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.default_main_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.program_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.get_var ArgSpec(args=['name', 'program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.name_scope ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.Executor.__init__ ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.close ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
@ -38,7 +21,7 @@ paddle.fluid.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'en
paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.DistributeTranspiler.get_trainer_program ArgSpec(args=['self', 'wait_port'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program', 'current_endpoint'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None, '127.0.0.1:6174'))
paddle.fluid.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level'], varargs=None, keywords=None, defaults=(None, False, 0))
paddle.fluid.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level', 'skip_grads'], varargs=None, keywords=None, defaults=(None, False, 0, False))
paddle.fluid.release_memory ArgSpec(args=['input_program', 'skip_opt_set'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DistributeTranspilerConfig.__init__
paddle.fluid.ParallelExecutor.__init__ ArgSpec(args=['self', 'use_cuda', 'loss_name', 'main_program', 'share_vars_from', 'exec_strategy', 'build_strategy', 'num_trainers', 'trainer_id', 'scope'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 1, 0, None))
@ -170,6 +153,13 @@ paddle.fluid.layers.elementwise_mul ArgSpec(args=['x', 'y', 'out', 'axis', 'use_
paddle.fluid.layers.elementwise_max ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_min ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_pow ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=['input', 'shape', 'dtype', 'input_dim_idx', 'output_dim_idx', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', 0, 0, -1.0, 1.0, 0))
paddle.fluid.layers.gaussian_random ArgSpec(args=['shape', 'mean', 'std', 'seed', 'dtype', 'use_mkldnn'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32', False))
paddle.fluid.layers.sampling_id ArgSpec(args=['x', 'min', 'max', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32'))
paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=['input', 'shape', 'input_dim_idx', 'output_dim_idx', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0, 0, 0.0, 1.0, 0, 'float32'))
paddle.fluid.layers.sum ArgSpec(args=['x', 'use_mkldnn'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.slice ArgSpec(args=['input', 'axes', 'starts', 'ends'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.shape ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
@ -241,13 +231,6 @@ paddle.fluid.layers.logical_and ArgSpec(args=[], varargs='args', keywords='kwarg
paddle.fluid.layers.logical_or ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_xor ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_not ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.gaussian_random ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sampling_id ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sum ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.slice ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.shape ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.maxout ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.logsigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
@ -286,7 +269,7 @@ paddle.fluid.layers.iou_similarity ArgSpec(args=[], varargs='args', keywords='kw
paddle.fluid.layers.box_coder ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.polygon_box_transform ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk'], varargs=None, keywords=None, defaults=('ROC', 4095, 1))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.natural_exp_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.inverse_time_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
@ -315,13 +298,18 @@ paddle.fluid.contrib.BeamSearchDecoder.early_stop ArgSpec(args=['self'], varargs
paddle.fluid.contrib.BeamSearchDecoder.read_array ArgSpec(args=['self', 'init', 'is_ids', 'is_scores'], varargs=None, keywords=None, defaults=(False, False))
paddle.fluid.contrib.BeamSearchDecoder.update_array ArgSpec(args=['self', 'array', 'value'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.memory_usage ArgSpec(args=['program', 'batch_size'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.op_freq_statistic ArgSpec(args=['program'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.QuantizeTranspiler.__init__ ArgSpec(args=['self', 'weight_bits', 'activation_bits', 'activation_quantize_type', 'weight_quantize_type', 'window_size'], varargs=None, keywords=None, defaults=(8, 8, 'abs_max', 'abs_max', 10000))
paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.QuantizeTranspiler.freeze_program ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.contrib.QuantizeTranspiler.training_transpile ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.transpiler.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.transpiler.DistributeTranspiler.get_trainer_program ArgSpec(args=['self', 'wait_port'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.transpiler.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program', 'current_endpoint'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None, '127.0.0.1:6174'))
paddle.fluid.transpiler.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level'], varargs=None, keywords=None, defaults=(None, False, 0))
paddle.fluid.transpiler.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level', 'skip_grads'], varargs=None, keywords=None, defaults=(None, False, 0, False))
paddle.fluid.transpiler.release_memory ArgSpec(args=['input_program', 'skip_opt_set'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.HashName.__init__ ArgSpec(args=['self', 'pserver_endpoints'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.HashName.dispatch ArgSpec(args=['self', 'varlist'], varargs=None, keywords=None, defaults=None)

@ -13,3 +13,5 @@ if(WITH_INFERENCE)
# NOTE: please add subdirectory inference at last.
add_subdirectory(inference)
endif()
add_subdirectory(train)

@ -56,9 +56,9 @@ else()
cc_test(mixed_vector_test SRCS mixed_vector_test.cc DEPS place memory device_context tensor)
endif()
if (NOT WIN32)
cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto recordio version)
cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto recordio version)
else()
cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto version)
cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto version)
endif (NOT WIN32)
cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor memory)
@ -141,20 +141,22 @@ cc_library(lod_rank_table SRCS lod_rank_table.cc DEPS lod_tensor)
cc_library(feed_fetch_method SRCS feed_fetch_method.cc DEPS lod_tensor scope glog)
cc_library(naive_executor SRCS naive_executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass)
if(WITH_DISTRIBUTE)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method sendrecvop_grpc cares grpc++_unsecure grpc_unsecure gpr graph_to_program_pass)
set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor")
set_source_files_properties(executor.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
else()
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass)
cc_test(test_naive_executor SRCS naive_executor_test.cc DEPS naive_executor op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass elementwise_add_op)
endif()
if (NOT WIN32)
cc_library(parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
graph graph_viz_pass multi_devices_graph_pass
multi_devices_graph_print_pass multi_devices_graph_check_pass
fast_threaded_ssa_graph_executor fuse_elewise_add_act_pass)
cc_library(parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
graph build_strategy
fast_threaded_ssa_graph_executor)
endif() # NOT WIN32
cc_library(prune SRCS prune.cc DEPS framework_proto)

@ -54,3 +54,8 @@ cc_library(scope_buffered_ssa_graph_executor SRCS scope_buffered_ssa_graph_execu
# device_context reduce_op_handle )
cc_library(fast_threaded_ssa_graph_executor SRCS fast_threaded_ssa_graph_executor.cc
DEPS fetch_op_handle ssa_graph_executor scope simple_threadpool device_context)
cc_library(build_strategy SRCS build_strategy.cc DEPS
graph_viz_pass multi_devices_graph_pass
multi_devices_graph_print_pass multi_devices_graph_check_pass
fuse_elewise_add_act_pass)

@ -0,0 +1,126 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
namespace paddle {
namespace framework {
namespace details {
class ParallelExecutorPassBuilder : public ir::PassBuilder {
public:
explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
: ir::PassBuilder(), strategy_(strategy) {
// Add a graph viz pass to record a graph.
if (!strategy_.debug_graphviz_path_.empty()) {
auto viz_pass = AppendPass("graph_viz_pass");
const std::string graph_path = string::Sprintf(
"%s%s", strategy_.debug_graphviz_path_.c_str(), "_original_graph");
viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
}
// Add op fusion.
if (strategy.fuse_elewise_add_act_ops_) {
auto fuse_elewise_add_act_pass = AppendPass("fuse_elewise_add_act_pass");
// Add a graph viz pass to record a graph.
if (!strategy.debug_graphviz_path_.empty()) {
auto viz_pass = AppendPass("graph_viz_pass");
const std::string graph_path = string::Sprintf(
"%s%s", strategy.debug_graphviz_path_.c_str(), "_fused_graph");
viz_pass->Set<std::string>("graph_viz_path",
new std::string(graph_path));
}
}
// Convert graph to run on multi-devices.
auto multi_devices_pass = AppendPass("multi_devices_pass");
multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
&strategy_);
// Add a graph print pass to record a graph with device info.
if (!strategy_.debug_graphviz_path_.empty()) {
auto multi_devices_print_pass = AppendPass("multi_devices_print_pass");
multi_devices_print_pass->SetNotOwned<const std::string>(
"debug_graphviz_path", &strategy_.debug_graphviz_path_);
multi_devices_print_pass->Set<details::GraphvizSSAGraphPrinter>(
"graph_printer", new details::GraphvizSSAGraphPrinter);
}
// Verify that the graph is correct for multi-device executor.
AppendPass("multi_devices_check_pass");
}
private:
BuildStrategy strategy_;
};
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy()
const {
pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
return pass_builder_;
}
std::unique_ptr<ir::Graph> BuildStrategy::Apply(
const ProgramDesc &main_program, const std::vector<platform::Place> &places,
const std::string &loss_var_name,
const std::unordered_set<std::string> &param_names,
const std::vector<Scope *> &local_scopes,
#ifdef PADDLE_WITH_CUDA
const bool use_cuda, platform::NCCLContextMap *nccl_ctxs) const {
#else
const bool use_cuda) const {
#endif
// Create a default one if not initialized by user.
if (!pass_builder_) {
CreatePassesFromStrategy();
}
std::unique_ptr<ir::Graph> graph(new ir::Graph(main_program));
for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
if (pass->Type() == "multi_devices_pass") {
pass->Erase("places");
pass->SetNotOwned<const std::vector<platform::Place>>("places", &places);
pass->Erase("loss_var_name");
pass->SetNotOwned<const std::string>("loss_var_name", &loss_var_name);
pass->Erase("params");
pass->SetNotOwned<const std::unordered_set<std::string>>("params",
&param_names);
pass->Erase("local_scopes");
pass->SetNotOwned<const std::vector<Scope *>>("local_scopes",
&local_scopes);
#ifdef PADDLE_WITH_CUDA
platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr;
pass->Erase("nccl_ctxs");
pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx);
#endif
}
graph = pass->Apply(std::move(graph));
}
return graph;
}
} // namespace details
} // namespace framework
} // namespace paddle
USE_PASS(fuse_elewise_add_act_pass);
USE_PASS(graph_viz_pass);
USE_PASS(multi_devices_pass);
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);

@ -15,6 +15,17 @@
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/pass_builder.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace paddle {
namespace framework {
@ -57,6 +68,30 @@ struct BuildStrategy {
bool fuse_elewise_add_act_ops_{false};
bool enable_data_balance_{false};
// User normally doesn't need to call this API.
// The PassBuilder allows for more customized insert, remove of passes
// from python side.
// A new PassBuilder is created based on configs defined above and
// passes are owned by the PassBuilder.
std::shared_ptr<ir::PassBuilder> CreatePassesFromStrategy() const;
// Apply the passes built by the pass_builder_. The passes will be
// applied to the Program and output an ir::Graph.
std::unique_ptr<ir::Graph> Apply(
const ProgramDesc &main_program,
const std::vector<platform::Place> &places,
const std::string &loss_var_name,
const std::unordered_set<std::string> &param_names,
const std::vector<Scope *> &local_scopes,
#ifdef PADDLE_WITH_CUDA
const bool use_cuda, platform::NCCLContextMap *nccl_ctxs) const;
#else
const bool use_cuda) const;
#endif
private:
mutable std::shared_ptr<ir::PassBuilder> pass_builder_;
};
} // namespace details

@ -20,79 +20,37 @@ namespace paddle {
namespace framework {
namespace details {
// Change it to thread safe flags if needed.
class ThreadUnsafeOwnershipFlags {
template <class T>
class COWPtr {
public:
explicit ThreadUnsafeOwnershipFlags(bool flag) : flag_(flag) {}
ThreadUnsafeOwnershipFlags(const ThreadUnsafeOwnershipFlags& other) = delete;
ThreadUnsafeOwnershipFlags& operator=(
const ThreadUnsafeOwnershipFlags& other) = delete;
ThreadUnsafeOwnershipFlags(ThreadUnsafeOwnershipFlags&& other) = default;
void SetOwnership(bool flag) { flag_ = flag; }
// Invoke the callback if it is not owned.
template <typename Callback>
void AcquireOwnershipOnce(Callback acquire) {
if (!flag_) {
acquire();
flag_ = true;
}
}
typedef std::shared_ptr<T> RefPtr;
private:
bool flag_;
};
RefPtr m_sp;
// Copy-On-Write pointer.
// It will hold a T* pointer, and only copy once when `MutableData` is invoked.
//
// The template parameter OwnershipFlags should have:
// * a constructor takes a bool. True if own.
// * SetOwnership(bool flag).
// * AcquireOwnershipOnce(Callback). It will invoke the callback if it is not
// owned.
//
// https://en.wikipedia.org/wiki/Copy-on-write
template <typename T, typename OwnershipFlags = ThreadUnsafeOwnershipFlags>
class COWPtr {
public:
// Ctor from raw pointer.
explicit COWPtr(T* ptr) : payload_(ptr), ownership_{true} {}
COWPtr() : m_sp(nullptr) {}
explicit COWPtr(T* t) : m_sp(t) {}
// Move methods. Steal ownership from origin
COWPtr(COWPtr&& other)
: payload_(other.payload_), ownership_{std::move(other.ownership_)} {}
COWPtr& operator=(COWPtr&& origin) = default;
const T& Data() const { return *m_sp; }
// Copy methods. Not own payload
COWPtr(const COWPtr& other) : payload_(other.payload_), ownership_{false} {}
COWPtr& operator=(const COWPtr& other) {
payload_ = other.payload_;
ownership_.SetOwnership(false);
return *this;
}
// Access read only data.
const T& Data() const { return *payload_; }
// Access mutable data. If the data is not owned, the data will be copied
// before.
T* MutableData() {
ownership_.AcquireOwnershipOnce(
[this] { payload_.reset(new T(*payload_)); });
return payload_.get();
DetachIfNotUnique();
return m_sp.get();
}
private:
// Actual data pointer.
std::shared_ptr<T> payload_;
void DetachIfNotUnique() {
T* tmp = m_sp.get();
if (!(tmp == nullptr || m_sp.unique())) {
Detach();
}
}
// Ownership flag.
OwnershipFlags ownership_;
void Detach() {
T* tmp = m_sp.get();
m_sp = RefPtr(new T(*tmp));
}
};
} // namespace details
} // namespace framework
} // namespace paddle

@ -30,6 +30,14 @@ TEST(COWPtr, all) {
ASSERT_EQ(ptr2.Data(), 10);
}
TEST(COWPtr, change_old) {
COWPtr<int> ptr(new int{0});
COWPtr<int> ptr2 = ptr;
*ptr.MutableData() = 10;
ASSERT_EQ(ptr2.Data(), 0);
ASSERT_EQ(ptr.Data(), 10);
}
} // namespace details
} // namespace framework
} // namespace paddle

@ -28,9 +28,9 @@ cc_library(graph_pattern_detector SRCS graph_pattern_detector.cc DEPS graph grap
pass_library(graph_to_program_pass base)
pass_library(graph_viz_pass base)
pass_library(fc_fuse_pass inference)
if(WITH_MKLDNN)
pass_library(conv_relu_mkldnn_fuse_pass inference)
endif()
if (WITH_MKLDNN)
pass_library(conv_relu_mkldnn_fuse_pass inference)
endif ()
pass_library(attention_lstm_fuse_pass inference)
pass_library(infer_clean_graph_pass inference)
pass_library(fc_lstm_fuse_pass inference)
@ -41,12 +41,14 @@ cc_library(fuse_elewise_add_act_pass SRCS fuse_elewise_add_act_pass.cc DEPS pass
set(GLOB_PASS_LIB ${PASS_LIBRARY} CACHE INTERNAL "Global PASS library")
cc_library(pass_builder SRCS pass_builder.cc DEPS pass)
cc_test(pass_test SRCS pass_test.cc DEPS graph pass graph_helper)
cc_test(graph_test SRCS graph_test.cc DEPS graph graph_helper op_registry)
cc_test(graph_helper_test SRCS graph_helper_test.cc DEPS graph graph_helper op_registry)
cc_test(graph_to_program_pass_test SRCS graph_to_program_pass_test.cc DEPS graph_to_program_pass)
cc_test(test_graph_pattern_detector SRCS graph_pattern_detector_tester.cc DEPS graph_pattern_detector)
cc_test(test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framework_proto)
if(WITH_MKLDNN)
cc_test(test_conv_relu_mkldnn_fuse_pass SRCS conv_relu_mkldnn_fuse_pass_tester.cc DEPS conv_relu_mkldnn_fuse_pass)
endif()
if (WITH_MKLDNN)
cc_test(test_conv_relu_mkldnn_fuse_pass SRCS conv_relu_mkldnn_fuse_pass_tester.cc DEPS conv_relu_mkldnn_fuse_pass)
endif ()

@ -257,6 +257,22 @@ std::unique_ptr<ir::Graph> AttentionLSTMFusePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
PDPattern external_pattern, subblock_pattern;
// Use the following variables to tell whether this model is RNN1.
// This fuse can only works on the RNN1 model.
std::unordered_set<std::string> specified_vars({"data_lod_attention",
"cell_init", "hidden_init",
"data", "week", "minute"});
int count = 0;
for (auto* node : graph->Nodes()) {
if (node->IsVar() && specified_vars.count(node->Name())) {
++count;
}
}
if (count < specified_vars.size()) {
return graph;
}
// Continue to fuse.
FindWhileOp(graph.get());
return graph;
}

@ -77,10 +77,12 @@ int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
const std::string BatchedCellPreAct =
patterns::UniqueKey("BatchedCellPreAct");
const std::string BatchedGate = patterns::UniqueKey("BatchedGate");
const std::string CheckedCell = patterns::UniqueKey("CheckedCell");
scope->Var(BatchedInput)->GetMutable<framework::LoDTensor>();
scope->Var(BatchedCellPreAct)->GetMutable<framework::LoDTensor>();
scope->Var(BatchedGate)->GetMutable<framework::LoDTensor>();
scope->Var(CheckedCell)->GetMutable<framework::LoDTensor>();
op_desc.SetInput("H0", {});
op_desc.SetInput("C0", {});
@ -90,6 +92,7 @@ int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
op_desc.SetOutput("BatchedGate", {BatchedGate});
op_desc.SetOutput("BatchCellPreAct", {BatchedCellPreAct});
op_desc.SetOutput("BatchedInput", {BatchedInput});
op_desc.SetOutput("CheckedCell", {CheckedCell});
op_desc.SetAttr("is_reverse", lstm->Op()->GetAttr("is_reverse"));
op_desc.SetAttr("use_peepholes", lstm->Op()->GetAttr("use_peepholes"));
// TODO(TJ): get from attr

@ -12,11 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/graph_helper.h"
#include <algorithm>
#include <deque>
#include <unordered_set>
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace paddle {
namespace framework {
namespace ir {
@ -113,6 +113,74 @@ std::map<ir::Node *, std::unordered_set<ir::Node *>> BuildOperationAdjList(
return adj_list;
}
size_t GraphNum(const Graph &graph) {
std::unordered_set<ir::Node *> nodes = graph.Nodes();
std::unordered_set<ir::Node *> visited_nodes;
visited_nodes.reserve(nodes.size());
std::deque<ir::Node *> q_nodes;
std::vector<std::unordered_set<ir::Node *>> graph_nodes;
std::unordered_set<ir::Node *> g_nodes;
size_t graph_count = 0;
auto traverse_nodes = [&visited_nodes,
&q_nodes](const std::vector<ir::Node *> &nodes) {
std::copy_if(
nodes.begin(), nodes.end(), std::back_inserter(q_nodes),
[&visited_nodes](Node *node) { return !visited_nodes.count(node); });
};
while (visited_nodes.size() != nodes.size()) {
if (!q_nodes.empty()) {
auto cur_node = q_nodes.front();
q_nodes.pop_front();
visited_nodes.insert(cur_node);
g_nodes.insert(cur_node);
traverse_nodes(cur_node->inputs);
traverse_nodes(cur_node->outputs);
} else {
++graph_count;
if (g_nodes.size()) {
graph_nodes.emplace_back(g_nodes);
}
g_nodes.clear();
for (auto &n : nodes) {
if (visited_nodes.count(n) == 0) {
q_nodes.push_back(n);
break;
}
}
}
}
if (g_nodes.size()) {
graph_nodes.emplace_back(g_nodes);
}
if (VLOG_IS_ON(10)) {
VLOG(10) << "graph_num: " << graph_nodes.size();
for (auto &g_n : graph_nodes) {
VLOG(10) << "graph_nodes: " << g_n.size();
if (g_n.size() < 10) {
std::stringstream out;
for (auto &node : g_n) {
out << "\nNode: " << node->Name() << " in [";
for (auto &n : node->inputs) {
out << n->Name() << ", ";
}
out << "], out[";
for (auto &n : node->outputs) {
out << n->Name() << ", ";
}
out << "]";
}
VLOG(10) << out.str();
}
}
}
return graph_count;
}
} // namespace ir
} // namespace framework
} // namespace paddle

@ -27,6 +27,8 @@ namespace ir {
// Test if the graph contains circle.
bool HasCircle(const Graph &graph);
size_t GraphNum(const Graph &graph);
// Topology Sort the operations in the graph from inputs to outputs.
// `graph` cannot contain circle.
std::vector<ir::Node *> TopologySortOperations(const Graph &graph);

@ -120,6 +120,97 @@ TEST(GraphHelperTest, Basic) {
ASSERT_EQ(node_map.at("op2"), 1UL);
ASSERT_TRUE(node_map.at("op3") < node_map.at("op5"));
}
void BuildZeroGraph(Graph* g) {}
void BuildOneGraph(Graph* g) {
ir::Node* o1 = g->CreateEmptyNode("op1", Node::Type::kOperation);
ir::Node* o2 = g->CreateEmptyNode("op2", Node::Type::kOperation);
ir::Node* o3 = g->CreateEmptyNode("op3", Node::Type::kOperation);
ir::Node* o4 = g->CreateEmptyNode("op4", Node::Type::kOperation);
ir::Node* o5 = g->CreateEmptyNode("op5", Node::Type::kOperation);
ir::Node* v1 = g->CreateEmptyNode("var1", Node::Type::kVariable);
ir::Node* v2 = g->CreateEmptyNode("var2", Node::Type::kVariable);
ir::Node* v3 = g->CreateEmptyNode("var3", Node::Type::kVariable);
ir::Node* v4 = g->CreateEmptyNode("var4", Node::Type::kVariable);
// o1->v1->o2
o1->outputs.push_back(v1);
o2->inputs.push_back(v1);
v1->inputs.push_back(o1);
v1->outputs.push_back(o2);
// o2->v2->o3
// o2->v2->o4
o2->outputs.push_back(v2);
o3->inputs.push_back(v2);
o4->inputs.push_back(v2);
v2->inputs.push_back(o2);
v2->outputs.push_back(o3);
v2->outputs.push_back(o4);
// o2->v3->o5
o2->outputs.push_back(v3);
o5->inputs.push_back(v3);
v3->inputs.push_back(o2);
v3->outputs.push_back(o5);
// o3-v4->o5
o3->outputs.push_back(v4);
o5->inputs.push_back(v4);
v4->inputs.push_back(o3);
v4->outputs.push_back(o5);
}
void BuildTwoGraphs(Graph* g) {
ir::Node* o1 = g->CreateEmptyNode("op1", Node::Type::kOperation);
ir::Node* o2 = g->CreateEmptyNode("op2", Node::Type::kOperation);
ir::Node* o3 = g->CreateEmptyNode("op3", Node::Type::kOperation);
ir::Node* o4 = g->CreateEmptyNode("op4", Node::Type::kOperation);
ir::Node* o5 = g->CreateEmptyNode("op5", Node::Type::kOperation);
ir::Node* v1 = g->CreateEmptyNode("var1", Node::Type::kVariable);
ir::Node* v2 = g->CreateEmptyNode("var2", Node::Type::kVariable);
ir::Node* v3 = g->CreateEmptyNode("var3", Node::Type::kVariable);
ir::Node* v4 = g->CreateEmptyNode("var4", Node::Type::kVariable);
// o1->v1->o2
o1->outputs.push_back(v1);
o2->inputs.push_back(v1);
v1->inputs.push_back(o1);
v1->outputs.push_back(o2);
// o2->v2->o3
// o2->v2->o4
o2->outputs.push_back(v2);
o3->inputs.push_back(v2);
o4->inputs.push_back(v2);
v2->inputs.push_back(o2);
v2->outputs.push_back(o3);
v2->outputs.push_back(o4);
// o2->v3->o5
// o2->outputs.push_back(v3);
o5->inputs.push_back(v3);
// v3->inputs.push_back(o2);
v3->outputs.push_back(o5);
// o3-v4->o5
o3->outputs.push_back(v4);
// o5->inputs.push_back(v4);
v4->inputs.push_back(o3);
// v4->outputs.push_back(o5);
}
TEST(GraphHelperTest, GraphNum) {
ProgramDesc prog;
Graph g(prog);
BuildZeroGraph(&g);
ASSERT_EQ(GraphNum(g), 0);
Graph g2(prog);
BuildOneGraph(&g2);
ASSERT_EQ(GraphNum(g2), 1);
Graph g3(prog);
BuildTwoGraphs(&g3);
ASSERT_EQ(GraphNum(g3), 2);
}
} // namespace ir
} // namespace framework
} // namespace paddle

@ -14,6 +14,8 @@
#include "paddle/fluid/framework/ir/graph_traits.h"
#include <vector>
namespace paddle {
namespace framework {
namespace ir {

@ -19,7 +19,6 @@ namespace paddle {
namespace framework {
namespace ir {
std::unique_ptr<Graph> Pass::Apply(std::unique_ptr<Graph> graph) const {
PADDLE_ENFORCE(!applied_, "Pass can only Apply() once.");
PADDLE_ENFORCE(graph.get(), "graph passed to Pass::Apply() cannot be empty.");
for (const std::string& attr : required_pass_attrs_) {
PADDLE_ENFORCE(attrs_.find(attr) != attrs_.end(),

@ -42,6 +42,8 @@ class Pass {
attr_dels_.clear();
}
std::string Type() const { return type_; }
std::unique_ptr<Graph> Apply(std::unique_ptr<Graph> graph) const;
// Get a reference to the attributed previously set.
@ -52,6 +54,21 @@ class Pass {
return *boost::any_cast<AttrType *>(attrs_.at(attr_name));
}
bool Has(const std::string &attr_name) const {
return attrs_.find(attr_name) != attrs_.end();
}
void Erase(const std::string &attr_name) {
if (!Has(attr_name)) {
return;
}
if (attr_dels_.find(attr_name) != attr_dels_.end()) {
attr_dels_[attr_name]();
attr_dels_.erase(attr_name);
}
attrs_.erase(attr_name);
}
// Set a pointer to the attribute. Pass takes ownership of the attribute.
template <typename AttrType>
void Set(const std::string &attr_name, AttrType *attr) {
@ -68,13 +85,15 @@ class Pass {
// should delete the attribute.
template <typename AttrType>
void SetNotOwned(const std::string &attr_name, AttrType *attr) {
PADDLE_ENFORCE(attrs_.count(attr_name) == 0);
PADDLE_ENFORCE(attrs_.count(attr_name) == 0, "%s already set in the pass",
attr_name);
attrs_[attr_name] = attr;
}
protected:
virtual std::unique_ptr<Graph> ApplyImpl(
std::unique_ptr<Graph> graph) const = 0;
virtual std::unique_ptr<Graph> ApplyImpl(std::unique_ptr<Graph> graph) const {
LOG(FATAL) << "Calling virtual Pass not implemented.";
}
private:
template <typename PassType>
@ -89,7 +108,10 @@ class Pass {
required_graph_attrs_.insert(attrs.begin(), attrs.end());
}
void RegisterType(const std::string &type) { type_ = type; }
mutable bool applied_{false};
std::string type_;
std::unordered_set<std::string> required_pass_attrs_;
std::unordered_set<std::string> required_graph_attrs_;
std::map<std::string, boost::any> attrs_;
@ -143,10 +165,11 @@ struct PassRegistrar : public Registrar {
PADDLE_ENFORCE(!PassRegistry::Instance().Has(pass_type),
"'%s' is registered more than once.", pass_type);
PassRegistry::Instance().Insert(
pass_type, [this]() -> std::unique_ptr<Pass> {
pass_type, [this, pass_type]() -> std::unique_ptr<Pass> {
std::unique_ptr<Pass> pass(new PassType());
pass->RegisterRequiredPassAttrs(this->required_pass_attrs_);
pass->RegisterRequiredGraphAttrs(this->required_graph_attrs_);
pass->RegisterType(pass_type);
return pass;
});
}

@ -0,0 +1,43 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/pass_builder.h"
namespace paddle {
namespace framework {
namespace ir {
std::shared_ptr<Pass> PassBuilder::AppendPass(const std::string& pass_type) {
auto pass = ir::PassRegistry::Instance().Get(pass_type);
passes_.emplace_back(pass.release());
return passes_.back();
}
void PassBuilder::RemovePass(size_t idx) {
PADDLE_ENFORCE(passes_.size() > idx);
passes_.erase(passes_.begin() + idx);
}
std::shared_ptr<Pass> PassBuilder::InsertPass(size_t idx,
const std::string& pass_type) {
PADDLE_ENFORCE(passes_.size() >= idx);
std::shared_ptr<Pass> pass(
ir::PassRegistry::Instance().Get(pass_type).release());
passes_.insert(passes_.begin() + idx, std::move(pass));
return passes_[idx];
}
} // namespace ir
} // namespace framework
} // namespace paddle

@ -0,0 +1,49 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace ir {
class PassBuilder {
public:
PassBuilder() {}
virtual ~PassBuilder() {}
// Append a new pass to the end.
std::shared_ptr<Pass> AppendPass(const std::string& pass_type);
// Insert a new pass after `idx`.
std::shared_ptr<Pass> InsertPass(size_t idx, const std::string& pass_type);
// Remove a new pass at `idx`.
void RemovePass(size_t idx);
// Returns a list of all passes.
std::vector<std::shared_ptr<Pass>> AllPasses() const { return passes_; }
protected:
std::vector<std::shared_ptr<Pass>> passes_;
};
} // namespace ir
} // namespace framework
} // namespace paddle

@ -82,12 +82,10 @@ TEST(PassTest, TestPassAttrCheck) {
ASSERT_EQ(graph->Get<int>("copy_test_pass_attr"), 2);
ASSERT_EQ(graph->Get<int>("copy_test_graph_attr"), 2);
try {
graph = pass->Apply(std::move(graph));
} catch (paddle::platform::EnforceNotMet e) {
exception = std::string(e.what());
}
ASSERT_TRUE(exception.find("Pass can only Apply() once") != exception.npos);
// Allow apply more than once.
graph.reset(new Graph(prog));
graph->Set<int>("test_graph_attr", new int);
graph = pass->Apply(std::move(graph));
pass = PassRegistry::Instance().Get("test_pass");
pass->SetNotOwned<int>("test_pass_attr", &val);

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save