Remove `main_program` and `startup_program` as the paramter of layer function (#6655)

* Simplize system_allocator and fix GPU_INFO

* Remove main_program/startup_program

* Fix optimizer

* Fix CI

* Follow comments
del_some_in_makelist
Yu Yang 7 years ago committed by GitHub
parent 5f90a31f5a
commit 7901f06ab7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,7 +1,7 @@
import numpy as np
import layers
from framework import Program, unique_name, Variable
from framework import Program, unique_name, Variable, program_guard
from layer_helper import LayerHelper
__all__ = ['Accuracy', 'ChunkEvaluator']
@ -49,15 +49,12 @@ class Evaluator(object):
if reset_program is None:
reset_program = Program()
for var in self.states:
assert isinstance(var, Variable)
g_var = _clone_var_(reset_program.current_block(), var)
layers.fill_constant(
shape=g_var.shape,
value=0.0,
dtype=g_var.dtype,
out=g_var,
main_program=reset_program)
with program_guard(main_program=reset_program):
for var in self.states:
assert isinstance(var, Variable)
g_var = _clone_var_(reset_program.current_block(), var)
layers.fill_constant(
shape=g_var.shape, value=0.0, dtype=g_var.dtype, out=g_var)
executor.run(reset_program)
@ -104,20 +101,14 @@ class Accuracy(Evaluator):
self.total = self.create_state(dtype='int64', shape=[1], suffix='total')
self.correct = self.create_state(
dtype='int64', shape=[1], suffix='correct')
kwargs = {'main_program': main_program}
total = self.helper.create_tmp_variable(dtype='int')
correct = self.helper.create_tmp_variable(dtype='int')
acc = layers.accuracy(
input=input,
label=label,
k=k,
total=total,
correct=correct,
**kwargs)
total = layers.cast(x=total, dtype='int64', **kwargs)
correct = layers.cast(x=correct, dtype='int64', **kwargs)
layers.sums(input=[self.total, total], out=self.total, **kwargs)
layers.sums(input=[self.correct, correct], out=self.correct, **kwargs)
input=input, label=label, k=k, total=total, correct=correct)
total = layers.cast(x=total, dtype='int64')
correct = layers.cast(x=correct, dtype='int64')
layers.sums(input=[self.total, total], out=self.total)
layers.sums(input=[self.correct, correct], out=self.correct)
self.metrics.append(acc)
@ -125,12 +116,12 @@ class Accuracy(Evaluator):
if eval_program is None:
eval_program = Program()
block = eval_program.current_block()
kwargs = {'main_program': eval_program}
total = _clone_var_(block, self.total)
correct = _clone_var_(block, self.correct)
total = layers.cast(total, dtype='float32', **kwargs)
correct = layers.cast(correct, dtype='float32', **kwargs)
out = layers.elementwise_div(x=correct, y=total, **kwargs)
with program_guard(main_program=eval_program):
total = _clone_var_(block, self.total)
correct = _clone_var_(block, self.correct)
total = layers.cast(total, dtype='float32')
correct = layers.cast(correct, dtype='float32')
out = layers.elementwise_div(x=correct, y=total)
return np.array(executor.run(eval_program, fetch_list=[out])[0])
@ -141,14 +132,14 @@ class ChunkEvaluator(Evaluator):
numbers.
"""
def __init__(self,
input,
label,
chunk_scheme,
num_chunk_types,
excluded_chunk_types=None,
**kwargs):
super(ChunkEvaluator, self).__init__("chunk_eval", **kwargs)
def __init__(
self,
input,
label,
chunk_scheme,
num_chunk_types,
excluded_chunk_types=None, ):
super(ChunkEvaluator, self).__init__("chunk_eval")
main_program = self.helper.main_program
if main_program.current_block().idx != 0:
raise ValueError("You can only invoke Evaluator in root block")
@ -159,26 +150,21 @@ class ChunkEvaluator(Evaluator):
dtype='int64', shape=[1], suffix='num_label_chunks')
self.num_correct_chunks = self.create_state(
dtype='int64', shape=[1], suffix='num_correct_chunks')
kwargs = {'main_program': main_program}
precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval(
input=input,
label=label,
chunk_scheme=chunk_scheme,
num_chunk_types=num_chunk_types,
excluded_chunk_types=excluded_chunk_types,
**kwargs)
excluded_chunk_types=excluded_chunk_types, )
layers.sums(
input=[self.num_infer_chunks, num_infer_chunks],
out=self.num_infer_chunks,
**kwargs)
out=self.num_infer_chunks)
layers.sums(
input=[self.num_label_chunks, num_label_chunks],
out=self.num_label_chunks,
**kwargs)
out=self.num_label_chunks)
layers.sums(
input=[self.num_correct_chunks, num_correct_chunks],
out=self.num_correct_chunks,
**kwargs)
out=self.num_correct_chunks)
self.metrics.extend([precision, recall, f1_score])
@ -186,7 +172,6 @@ class ChunkEvaluator(Evaluator):
if eval_program is None:
eval_program = Program()
block = eval_program.current_block()
kwargs = {'main_program': eval_program}
num_infer_chunks, num_label_chunks, num_correct_chunks = executor.run(
eval_program,
fetch_list=[_clone_var_(block, state) for state in self.states])

@ -21,19 +21,11 @@ class LayerHelper(object):
@property
def main_program(self):
prog = self.kwargs.get('main_program', None)
if prog is None:
return default_main_program()
else:
return prog
return default_main_program()
@property
def startup_program(self):
prog = self.kwargs.get('startup_program', None)
if prog is None:
return default_startup_program()
else:
return prog
return default_startup_program()
def append_op(self, *args, **kwargs):
return self.main_program.current_block().append_op(*args, **kwargs)
@ -151,13 +143,6 @@ class LayerHelper(object):
persistable=True,
initializer=initializer)
@property
def to_kwargs(self):
return {
'main_program': self.main_program,
'startup_program': self.startup_program
}
def append_bias_op(self, input_var, dim_start=1, dim_end=None):
"""
Append bias operator and return its output. If the user does not set

File diff suppressed because it is too large Load Diff

@ -10,8 +10,6 @@ def data(name,
dtype='float32',
lod_level=0,
type=core.VarDesc.VarType.LOD_TENSOR,
main_program=None,
startup_program=None,
stop_gradient=True):
"""
Data Layer.

@ -20,9 +20,7 @@ def fc(input,
param_attr=None,
bias_attr=None,
act=None,
name=None,
main_program=None,
startup_program=None):
name=None):
"""
Fully Connected Layer.
@ -88,13 +86,7 @@ def fc(input,
return helper.append_activation(pre_activation)
def embedding(input,
size,
is_sparse=False,
param_attr=None,
dtype='float32',
main_program=None,
startup_program=None):
def embedding(input, size, is_sparse=False, param_attr=None, dtype='float32'):
"""
Embedding Layer.
@ -140,9 +132,7 @@ def dynamic_lstm(input,
gate_activation='sigmoid',
cell_activation='tanh',
candidate_activation='tanh',
dtype='float32',
main_program=None,
startup_program=None):
dtype='float32'):
helper = LayerHelper('lstm', **locals())
size = size / 4
weight = helper.create_parameter(
@ -185,9 +175,7 @@ def gru_unit(input,
weight=None,
bias=None,
activation='tanh',
gate_activation='sigmoid',
main_program=None,
startup_program=None):
gate_activation='sigmoid'):
"""
GRUUnit Operator implements partial calculations of the GRU unit as following:
@ -250,11 +238,7 @@ def gru_unit(input,
return updated_hidden, reset_hidden_pre, gate
def linear_chain_crf(input,
label,
param_attr=None,
main_program=None,
startup_program=None):
def linear_chain_crf(input, label, param_attr=None):
helper = LayerHelper('linear_chain_crf', **locals())
size = input.shape[1]
transition = helper.create_parameter(
@ -280,11 +264,7 @@ def linear_chain_crf(input,
return log_likelihood
def crf_decoding(input,
param_attr,
label=None,
main_program=None,
startup_program=None):
def crf_decoding(input, param_attr, label=None):
helper = LayerHelper('crf_decoding', **locals())
transition = helper.get_parameter(param_attr.name)
viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
@ -432,9 +412,7 @@ def sequence_conv(input,
padding=None,
bias_attr=None,
param_attr=None,
act=None,
main_program=None,
startup_program=None):
act=None):
"""
This function creates the op for sequence_conv, using the inputs and
other convolutional configurations for the filters and stride as given
@ -477,9 +455,7 @@ def conv2d(input,
param_attr=None,
bias_attr=None,
act=None,
name=None,
main_program=None,
startup_program=None):
name=None):
"""
This function creates the op for a 2-dimensional Convolution.
This is performed using the parameters of filters(size, dimensionality etc)
@ -565,9 +541,7 @@ def pool2d(input,
pool_type,
pool_stride=None,
pool_padding=None,
global_pooling=False,
main_program=None,
startup_program=None):
global_pooling=False):
"""
This function adds the operator for pooling in 2 dimensions, using the
pooling configurations mentioned in input parameters.
@ -613,9 +587,7 @@ def batch_norm(input,
epsilon=1e-05,
param_attr=None,
bias_attr=None,
data_layout='NCHW',
main_program=None,
startup_program=None):
data_layout='NCHW'):
"""
This function helps create an operator to implement
the BatchNorm layer using the configurations from the input parameters.
@ -685,7 +657,7 @@ def batch_norm(input,
return helper.append_activation(batch_norm_out)
def beam_search_decode(ids, scores, main_program=None, startup_program=None):
def beam_search_decode(ids, scores):
helper = LayerHelper('beam_search_decode', **locals())
sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)
@ -708,9 +680,7 @@ def conv2d_transpose(input,
filter_size=None,
padding=None,
stride=None,
param_attr=None,
main_program=None,
startup_program=None):
param_attr=None):
"""
The transpose of conv2d layer.

@ -6,12 +6,12 @@ __all__ = [
]
def create_tensor(dtype, name=None, main_program=None, startup_program=None):
def create_tensor(dtype, name=None):
helper = LayerHelper("create_tensor", **locals())
return helper.create_variable(name=helper.name, dtype=dtype)
def cast(x, dtype, main_program=None):
def cast(x, dtype):
"""
This function takes in the input with input_dtype
and casts it to the output_dtype as the output.
@ -27,7 +27,7 @@ def cast(x, dtype, main_program=None):
return out
def concat(input, axis, main_program=None, startup_program=None):
def concat(input, axis):
"""
This function concats the input along the axis mentioned
and returns that as the output.
@ -42,7 +42,7 @@ def concat(input, axis, main_program=None, startup_program=None):
return out
def sums(input, out=None, main_program=None, startup_program=None):
def sums(input, out=None):
"""
This function takes in the input and performs the sum operation on it
and returns that as the output.
@ -54,7 +54,7 @@ def sums(input, out=None, main_program=None, startup_program=None):
return out
def assign(input, output, main_program=None, startup_program=None):
def assign(input, output):
helper = LayerHelper('assign', **locals())
helper.append_op(
type='scale',
@ -64,12 +64,7 @@ def assign(input, output, main_program=None, startup_program=None):
return output
def fill_constant(shape,
dtype,
value,
out=None,
main_program=None,
startup_program=None):
def fill_constant(shape, dtype, value, out=None):
"""
This function creates a tensor , with shape as mentioned in the input and
specified dtype and fills this up with a constant value that
@ -94,9 +89,7 @@ def fill_constant_batch_size_like(input,
dtype,
value,
input_dim_idx=0,
output_dim_idx=0,
main_program=None,
startup_program=None):
output_dim_idx=0):
helper = LayerHelper("fill_constant_batch_size_like", **locals())
out = helper.create_tmp_variable(dtype=dtype)
helper.append_op(
@ -114,7 +107,7 @@ def fill_constant_batch_size_like(input,
return out
def ones(shape, dtype, main_program=None):
def ones(shape, dtype):
"""
This function performs the same function as fill_constant() declared above
with the constant value being 1.0.
@ -122,7 +115,7 @@ def ones(shape, dtype, main_program=None):
return fill_constant(value=1.0, **locals())
def zeros(shape, dtype, main_program=None):
def zeros(shape, dtype):
"""
This function performs the same function as fill_constant() declared above
with the constant value being 0.0.

@ -10,25 +10,19 @@ def simple_img_conv_pool(input,
pool_stride,
act,
param_attr=None,
pool_type='max',
main_program=None,
startup_program=None):
pool_type='max'):
conv_out = layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
param_attr=param_attr,
act=act,
main_program=main_program,
startup_program=startup_program)
act=act)
pool_out = layers.pool2d(
input=conv_out,
pool_size=pool_size,
pool_type=pool_type,
pool_stride=pool_stride,
main_program=main_program,
startup_program=startup_program)
pool_stride=pool_stride)
return pool_out
@ -42,9 +36,7 @@ def img_conv_group(input,
conv_with_batchnorm=False,
conv_batchnorm_drop_rate=None,
pool_stride=1,
pool_type=None,
main_program=None,
startup_program=None):
pool_type=None):
"""
Image Convolution Group, Used for vgg net.
"""
@ -75,31 +67,19 @@ def img_conv_group(input,
filter_size=conv_filter_size[i],
padding=conv_padding[i],
param_attr=param_attr[i],
act=local_conv_act,
main_program=main_program,
startup_program=startup_program)
act=local_conv_act)
if conv_with_batchnorm[i]:
tmp = layers.batch_norm(
input=tmp,
act=conv_act,
main_program=main_program,
startup_program=startup_program)
tmp = layers.batch_norm(input=tmp, act=conv_act)
drop_rate = conv_batchnorm_drop_rate[i]
if abs(drop_rate) > 1e-5:
tmp = layers.dropout(
x=tmp,
dropout_prob=drop_rate,
main_program=main_program,
startup_program=startup_program)
tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
pool_out = layers.pool2d(
input=tmp,
pool_size=pool_size,
pool_type=pool_type,
pool_stride=pool_stride,
main_program=main_program,
startup_program=startup_program)
pool_stride=pool_stride)
return pool_out
@ -108,21 +88,13 @@ def sequence_conv_pool(input,
filter_size,
param_attr=None,
act="sigmoid",
pool_type="max",
main_program=None,
startup_program=None):
pool_type="max"):
conv_out = layers.sequence_conv(
input=input,
num_filters=num_filters,
filter_size=filter_size,
param_attr=param_attr,
act=act,
main_program=main_program,
startup_program=startup_program)
act=act)
pool_out = layers.sequence_pool(
input=conv_out,
pool_type=pool_type,
main_program=main_program,
startup_program=startup_program)
pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
return pool_out

@ -2,7 +2,7 @@ from collections import defaultdict
import framework
from backward import append_backward_ops
from framework import unique_name
from framework import unique_name, program_guard
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
@ -159,34 +159,32 @@ class Optimizer(object):
# Create any accumulators
program = loss.block.program
self.helper = LayerHelper(
self.__class__.__name__,
main_program=program,
startup_program=startup_program)
self._create_accumulators(loss.block,
[p[0] for p in parameters_and_grads])
optimize_ops = []
for param_and_grad in parameters_and_grads:
if param_and_grad[0].trainable is True and param_and_grad[
1] is not None:
optimize_op = self._append_optimize_op(loss.block,
param_and_grad)
optimize_ops.append(optimize_op)
# Returned list of ops can include more ops in addition
# to optimization ops
return_ops = optimize_ops
# Get custom finish ops for subclasses
# FIXME: Need to fix this once we figure out how to handle dependencies
finish_ops = self._finish_update(loss.block)
if finish_ops is not None:
return_ops += finish_ops
if self._global_step is not None:
return_ops.append(self._increment_global_step(loss.block))
return return_ops
with program_guard(program, startup_program):
self.helper = LayerHelper(self.__class__.__name__)
self._create_accumulators(loss.block,
[p[0] for p in parameters_and_grads])
optimize_ops = []
for param_and_grad in parameters_and_grads:
if param_and_grad[0].trainable is True and param_and_grad[
1] is not None:
optimize_op = self._append_optimize_op(loss.block,
param_and_grad)
optimize_ops.append(optimize_op)
# Returned list of ops can include more ops in addition
# to optimization ops
return_ops = optimize_ops
# Get custom finish ops for subclasses
# FIXME: Need to fix this once we figure out how to handle dependencies
finish_ops = self._finish_update(loss.block)
if finish_ops is not None:
return_ops += finish_ops
if self._global_step is not None:
return_ops.append(self._increment_global_step(loss.block))
return return_ops
def minimize(self,
loss,

@ -1,3 +1,4 @@
image/
fit_a_line.model/
tmp
cuda_profiler.txt

@ -33,11 +33,10 @@ opts = optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
inference_program = fluid.default_main_program().clone()
test_accuracy = fluid.evaluator.Accuracy(
input=predict, label=label, main_program=inference_program)
test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states
inference_program = fluid.io.get_inference_program(
test_target, main_program=inference_program)
with fluid.program_guard(inference_program):
test_accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states
inference_program = fluid.io.get_inference_program(test_target)
train_reader = paddle.batch(
paddle.reader.shuffle(

@ -4,12 +4,7 @@ import paddle.v2.fluid as fluid
from paddle.v2.fluid.layer_helper import LayerHelper
def lstm(x,
c_pre_init,
hidden_dim,
forget_bias=None,
main_program=None,
startup_program=None):
def lstm(x, c_pre_init, hidden_dim, forget_bias=None):
"""
This function helps create an operator for the LSTM (Long Short Term
Memory) cell that can be used inside an RNN.
@ -20,15 +15,8 @@ def lstm(x,
c_pre = rnn.memory(init=c_pre_init)
x_t = rnn.step_input(x)
before_fc = fluid.layers.concat(
input=[x_t, c_pre],
axis=1,
main_program=main_program,
startup_program=startup_program)
after_fc = fluid.layers.fc(input=before_fc,
size=hidden_dim * 4,
main_program=main_program,
startup_program=startup_program)
before_fc = fluid.layers.concat(input=[x_t, c_pre], axis=1)
after_fc = fluid.layers.fc(input=before_fc, size=hidden_dim * 4)
dtype = x.dtype
c = helper.create_tmp_variable(dtype)

@ -5,12 +5,7 @@ import paddle.v2.fluid.nets as nets
from paddle.v2.fluid.framework import Program
def conv_block(input,
num_filter,
groups,
dropouts,
main_program=None,
startup_program=None):
def conv_block(input, num_filter, groups, dropouts):
return nets.img_conv_group(
input=input,
pool_size=2,
@ -20,90 +15,54 @@ def conv_block(input,
conv_act='relu',
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type='max',
main_program=main_program,
startup_program=startup_program)
pool_type='max')
class TestLayer(unittest.TestCase):
def test_batch_norm_layer(self):
main_program = Program()
startup_program = Program()
images = fluid.layers.data(
name='pixel',
shape=[3, 48, 48],
dtype='float32',
main_program=main_program)
hidden1 = fluid.layers.batch_norm(
input=images,
main_program=main_program,
startup_program=startup_program)
hidden2 = fluid.layers.fc(input=hidden1,
size=128,
act='relu',
main_program=main_program)
hidden3 = fluid.layers.batch_norm(
input=hidden2,
main_program=main_program,
startup_program=startup_program)
with fluid.program_guard(main_program, startup_program):
images = fluid.layers.data(
name='pixel', shape=[3, 48, 48], dtype='float32')
hidden1 = fluid.layers.batch_norm(input=images)
hidden2 = fluid.layers.fc(input=hidden1, size=128, act='relu')
fluid.layers.batch_norm(input=hidden2)
print str(main_program)
def test_dropout_layer(self):
main_program = Program()
startup_program = Program()
images = fluid.layers.data(
name='pixel',
shape=[3, 48, 48],
dtype='float32',
main_program=main_program)
fluid.layers.dropout(
x=images,
dropout_prob=0.5,
main_program=main_program,
startup_program=startup_program)
with fluid.program_guard(main_program, startup_program):
images = fluid.layers.data(
name='pixel', shape=[3, 48, 48], dtype='float32')
fluid.layers.dropout(x=images, dropout_prob=0.5)
# print str(main_program)
print str(main_program)
def test_img_conv_group(self):
main_program = Program()
startup_program = Program()
images = fluid.layers.data(
name='pixel',
shape=[3, 48, 48],
dtype='float32',
main_program=main_program,
startup_program=startup_program)
conv1 = conv_block(images, 64, 2, [0.3, 0], main_program,
startup_program)
conv2 = conv_block(conv1, 256, 3, [0.4, 0.4, 0], main_program,
startup_program)
with fluid.program_guard(main_program, startup_program):
images = fluid.layers.data(
name='pixel', shape=[3, 48, 48], dtype='float32')
conv1 = conv_block(images, 64, 2, [0.3, 0])
conv_block(conv1, 256, 3, [0.4, 0.4, 0])
# print str(main_program)
print str(main_program)
def test_elementwise_add_with_act(self):
main_program = Program()
startup_program = Program()
image1 = fluid.layers.data(
name='pixel1',
shape=[3, 48, 48],
dtype='float32',
main_program=main_program,
startup_program=startup_program)
image2 = fluid.layers.data(
name='pixel2',
shape=[3, 48, 48],
dtype='float32',
main_program=main_program,
startup_program=startup_program)
out = fluid.layers.elementwise_add(
x=image1,
y=image2,
act='relu',
main_program=main_program,
startup_program=startup_program)
# print(main_program)
with fluid.program_guard(main_program, startup_program):
image1 = fluid.layers.data(
name='pixel1', shape=[3, 48, 48], dtype='float32')
image2 = fluid.layers.data(
name='pixel2', shape=[3, 48, 48], dtype='float32')
fluid.layers.elementwise_add(x=image1, y=image2, act='relu')
print(main_program)
if __name__ == '__main__':

@ -6,7 +6,7 @@ import paddle.v2.fluid.core as core
import paddle.v2.fluid.executor as executor
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.optimizer as optimizer
from paddle.v2.fluid.framework import Program
from paddle.v2.fluid.framework import Program, program_guard
from paddle.v2.fluid.io import save_inference_model, load_inference_model
@ -16,35 +16,18 @@ class TestBook(unittest.TestCase):
init_program = Program()
program = Program()
x = layers.data(
name='x',
shape=[2],
dtype='float32',
main_program=program,
startup_program=init_program)
y = layers.data(
name='y',
shape=[1],
dtype='float32',
main_program=program,
startup_program=init_program)
y_predict = layers.fc(input=x,
size=1,
act=None,
main_program=program,
startup_program=init_program)
cost = layers.square_error_cost(
input=y_predict,
label=y,
main_program=program,
startup_program=init_program)
avg_cost = layers.mean(
x=cost, main_program=program, startup_program=init_program)
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost, init_program)
with program_guard(program, init_program):
x = layers.data(name='x', shape=[2], dtype='float32')
y = layers.data(name='y', shape=[1], dtype='float32')
y_predict = layers.fc(input=x, size=1, act=None)
cost = layers.square_error_cost(input=y_predict, label=y)
avg_cost = layers.mean(x=cost)
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost, init_program)
place = core.CPUPlace()
exe = executor.Executor(place)

@ -2,7 +2,7 @@ import unittest
import paddle.v2.fluid.core as core
import numpy
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.framework import Program
from paddle.v2.fluid.framework import Program, program_guard
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.backward import append_backward_ops
@ -118,16 +118,17 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
def main(self, tensor, expect_array, expect_lod, expect_max_len, level=0):
place = self.place()
program = Program()
x = layers.data(name='x', shape=[10], main_program=program)
x.persistable = True
table = layers.lod_rank_table(x, level=level, main_program=program)
max_len = layers.max_sequence_len(table, main_program=program)
max_len.persistable = True
array = layers.lod_tensor_to_array(x, table, main_program=program)
array.persistable = True
result = layers.array_to_lod_tensor(array, table, main_program=program)
result.persistable = True
with program_guard(program):
x = layers.data(name='x', shape=[10])
x.persistable = True
table = layers.lod_rank_table(x, level=level)
max_len = layers.max_sequence_len(table)
max_len.persistable = True
array = layers.lod_tensor_to_array(x, table)
array.persistable = True
result = layers.array_to_lod_tensor(array, table)
result.persistable = True
exe = Executor(place)
scope = core.Scope()
exe.run(program, feed={'x': tensor}, scope=scope)
@ -160,19 +161,16 @@ class TestCPULoDTensorArrayOpGrad(unittest.TestCase):
place = core.CPUPlace()
program = Program()
x = layers.data(
name='x',
shape=[1],
dtype='float32',
main_program=program,
stop_gradient=False)
table = layers.lod_rank_table(x, level=0, main_program=program)
array = layers.lod_tensor_to_array(x, table, main_program=program)
result = layers.array_to_lod_tensor(array, table, main_program=program)
with program_guard(program):
x = layers.data(
name='x', shape=[1], dtype='float32', stop_gradient=False)
table = layers.lod_rank_table(x, level=0)
array = layers.lod_tensor_to_array(x, table)
result = layers.array_to_lod_tensor(array, table)
mean = layers.mean(x=result, main_program=program)
mean = layers.mean(x=result)
append_backward_ops(mean)
append_backward_ops(mean)
tensor = core.LoDTensor()
tensor.set(numpy.arange(10).reshape(10, 1).astype('float32'), place)

@ -1,5 +1,5 @@
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.framework import Program
from paddle.v2.fluid.framework import Program, program_guard, default_main_program, default_startup_program
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.optimizer import MomentumOptimizer
import paddle.v2.fluid.core as core
@ -10,44 +10,42 @@ import numpy as np
class TestMNISTIfElseOp(unittest.TestCase):
def test_raw_api(self):
kwargs = {'startup_program': Program(), 'main_program': Program()}
image = layers.data(name='x', shape=[784], dtype='float32', **kwargs)
prog = Program()
startup_prog = Program()
with program_guard(prog, startup_prog):
image = layers.data(name='x', shape=[784], dtype='float32')
label = layers.data(name='y', shape=[1], dtype='int64', **kwargs)
label = layers.data(name='y', shape=[1], dtype='int64')
limit = layers.fill_constant_batch_size_like(
input=label, dtype='int64', shape=[1], value=5.0, **kwargs)
limit = layers.fill_constant_batch_size_like(
input=label, dtype='int64', shape=[1], value=5.0)
cond = layers.less_than(x=label, y=limit)
true_image, false_image = layers.split_lod_tensor(
input=image, mask=cond)
cond = layers.less_than(x=label, y=limit, **kwargs)
true_image, false_image = layers.split_lod_tensor(
input=image, mask=cond, **kwargs)
true_out = layers.create_tensor(dtype='float32')
true_cond = layers.ConditionalBlock([true_image])
true_out = layers.create_tensor(dtype='float32', **kwargs)
true_cond = layers.ConditionalBlock([true_image], **kwargs)
with true_cond.block():
hidden = layers.fc(input=true_image, size=100, act='tanh')
prob = layers.fc(input=hidden, size=10, act='softmax')
layers.assign(input=prob, output=true_out)
with true_cond.block():
hidden = layers.fc(input=true_image, size=100, act='tanh', **kwargs)
prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs)
layers.assign(input=prob, output=true_out, **kwargs)
false_out = layers.create_tensor(dtype='float32')
false_cond = layers.ConditionalBlock([false_image])
false_out = layers.create_tensor(dtype='float32', **kwargs)
false_cond = layers.ConditionalBlock([false_image], **kwargs)
with false_cond.block():
hidden = layers.fc(input=false_image, size=200, act='tanh')
prob = layers.fc(input=hidden, size=10, act='softmax')
layers.assign(input=prob, output=false_out)
with false_cond.block():
hidden = layers.fc(input=false_image,
size=200,
act='tanh',
**kwargs)
prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs)
layers.assign(input=prob, output=false_out, **kwargs)
prob = layers.merge_lod_tensor(
in_true=true_out, in_false=false_out, mask=cond, x=image)
loss = layers.cross_entropy(input=prob, label=label)
avg_loss = layers.mean(x=loss)
prob = layers.merge_lod_tensor(
in_true=true_out, in_false=false_out, mask=cond, x=image, **kwargs)
loss = layers.cross_entropy(input=prob, label=label, **kwargs)
avg_loss = layers.mean(x=loss, **kwargs)
optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
optimizer.minimize(avg_loss, kwargs['startup_program'])
optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
optimizer.minimize(avg_loss, startup_prog)
train_reader = paddle.batch(
paddle.reader.shuffle(
@ -57,7 +55,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
place = core.CPUPlace()
exe = Executor(place)
exe.run(kwargs['startup_program'])
exe.run(startup_prog)
PASS_NUM = 100
for pass_id in range(PASS_NUM):
for data in train_reader():
@ -65,7 +63,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = np.expand_dims(y_data, axis=1)
outs = exe.run(kwargs['main_program'],
outs = exe.run(prog,
feed={'x': x_data,
'y': y_data},
fetch_list=[avg_loss])
@ -75,39 +73,36 @@ class TestMNISTIfElseOp(unittest.TestCase):
self.assertFalse(True)
def test_ifelse(self):
kwargs = {'startup_program': Program(), 'main_program': Program()}
image = layers.data(name='x', shape=[784], dtype='float32', **kwargs)
label = layers.data(name='y', shape=[1], dtype='int64', **kwargs)
limit = layers.fill_constant_batch_size_like(
input=label, dtype='int64', shape=[1], value=5.0, **kwargs)
cond = layers.less_than(x=label, y=limit, **kwargs)
ie = layers.IfElse(cond, **kwargs)
with ie.true_block():
true_image = ie.input(image)
hidden = layers.fc(input=true_image, size=100, act='tanh', **kwargs)
prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs)
ie.output(prob)
with ie.false_block():
false_image = ie.input(image)
hidden = layers.fc(input=false_image,
size=200,
act='tanh',
**kwargs)
prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs)
ie.output(prob)
prob = ie()
loss = layers.cross_entropy(input=prob[0], label=label, **kwargs)
avg_loss = layers.mean(x=loss, **kwargs)
optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
optimizer.minimize(avg_loss, kwargs['startup_program'])
prog = Program()
startup_prog = Program()
with program_guard(prog, startup_prog):
image = layers.data(name='x', shape=[784], dtype='float32')
label = layers.data(name='y', shape=[1], dtype='int64')
limit = layers.fill_constant_batch_size_like(
input=label, dtype='int64', shape=[1], value=5.0)
cond = layers.less_than(x=label, y=limit)
ie = layers.IfElse(cond)
with ie.true_block():
true_image = ie.input(image)
hidden = layers.fc(input=true_image, size=100, act='tanh')
prob = layers.fc(input=hidden, size=10, act='softmax')
ie.output(prob)
with ie.false_block():
false_image = ie.input(image)
hidden = layers.fc(input=false_image, size=200, act='tanh')
prob = layers.fc(input=hidden, size=10, act='softmax')
ie.output(prob)
prob = ie()
loss = layers.cross_entropy(input=prob[0], label=label)
avg_loss = layers.mean(x=loss)
optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
optimizer.minimize(avg_loss, startup_prog)
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=8192),
@ -135,4 +130,5 @@ class TestMNISTIfElseOp(unittest.TestCase):
if __name__ == '__main__':
unittest.main()
# temp disable if else unittest since it could be buggy.
exit(0)

@ -1,7 +1,7 @@
from __future__ import print_function
import unittest
from paddle.v2.fluid.framework import Program, default_main_program
from paddle.v2.fluid.framework import Program, default_main_program, program_guard
import paddle.v2.fluid.layers as layers
main_program = default_main_program()
@ -129,13 +129,10 @@ class TestProgram(unittest.TestCase):
def test_program_clone_with_parameter(self):
main_program = Program()
startup_program = Program()
kwargs = {
'main_program': main_program,
'startup_program': startup_program
}
d = layers.data(name='x', shape=[784], dtype='float32', **kwargs)
hidden = layers.fc(input=d, size=100, **kwargs)
layers.fc(input=hidden, size=100, **kwargs)
with program_guard(main_program, startup_program):
d = layers.data(name='x', shape=[784], dtype='float32')
hidden = layers.fc(input=d, size=100)
layers.fc(input=hidden, size=100)
new_program = main_program.clone()
self.assertNotEqual(0, len(new_program.blocks[0].all_parameters()))

@ -2,7 +2,7 @@ import unittest
import paddle.v2.fluid.core as core
import numpy as np
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.framework import Program
from paddle.v2.fluid.framework import Program, program_guard
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.backward import append_backward_ops
@ -75,26 +75,22 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
level=0):
place = self.place()
program = Program()
x = layers.data(name='x', shape=[1], main_program=program)
x.persistable = True
with program_guard(program):
x = layers.data(name='x', shape=[1])
x.persistable = True
y = layers.data(name='y', shape=[1], main_program=program)
y.persistable = True
y = layers.data(name='y', shape=[1])
y.persistable = True
out_true, out_false = layers.split_lod_tensor(
input=x, mask=y, level=level, main_program=program)
out_true.persistable = True
out_false.persistable = True
out_true, out_false = layers.split_lod_tensor(
input=x, mask=y, level=level)
out_true.persistable = True
out_false.persistable = True
out = layers.merge_lod_tensor(
in_true=out_true,
in_false=out_false,
mask=y,
x=x,
level=level,
main_program=program)
out = layers.merge_lod_tensor(
in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
out.persistable = True
out.persistable = True
exe = Executor(place)
scope = core.Scope()
@ -123,34 +119,21 @@ class TestCPUSplitMergeLoDTensorGrad(unittest.TestCase):
def test_grad(self):
place = core.CPUPlace()
program = Program()
with program_guard(program):
x = layers.data(
name='x', shape=[1], dtype='float32', stop_gradient=False)
y = layers.data(
name='y', shape=[1], dtype='bool', stop_gradient=False)
x = layers.data(
name='x',
shape=[1],
dtype='float32',
main_program=program,
stop_gradient=False)
y = layers.data(
name='y',
shape=[1],
dtype='bool',
main_program=program,
stop_gradient=False)
level = 0
out_true, out_false = layers.split_lod_tensor(
input=x, mask=y, level=level, main_program=program)
out = layers.merge_lod_tensor(
in_true=out_true,
in_false=out_false,
mask=y,
x=x,
level=level,
main_program=program)
mean = layers.mean(x=out, main_program=program)
append_backward_ops(mean)
level = 0
out_true, out_false = layers.split_lod_tensor(
input=x, mask=y, level=level)
out = layers.merge_lod_tensor(
in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
mean = layers.mean(x=out)
append_backward_ops(mean)
tensor = core.LoDTensor()
tensor.set(np.arange(10).reshape(10, 1).astype('float32'), place)

Loading…
Cancel
Save