|
|
|
@ -28,23 +28,28 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
|
|
|
|
|
|
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
|
|
|
auto label_dims = ctx->GetInputDim("Label");
|
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "Input(X)'s rank should be 2.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
|
|
|
|
|
"Input(Label)'s rank should be 2.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
|
|
|
|
|
"The 1st dimension of Input(X) and Input(Label) should "
|
|
|
|
|
"be equal.");
|
|
|
|
|
int rank = x_dims.size();
|
|
|
|
|
PADDLE_ENFORCE_EQ(rank, label_dims.size(),
|
|
|
|
|
"Input(X) and Input(Label) shall have the same rank.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
|
|
|
|
|
framework::slice_ddim(label_dims, 0, rank - 1),
|
|
|
|
|
"Input(X) and Input(Label) shall have the same shape "
|
|
|
|
|
"except the last dimension.");
|
|
|
|
|
if (ctx->Attrs().Get<bool>("soft_label")) {
|
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1],
|
|
|
|
|
"If Attr(soft_label) == true, the 2nd dimension of "
|
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
|
|
|
|
|
"If Attr(soft_label) == true, the last dimension of "
|
|
|
|
|
"Input(X) and Input(Label) should be equal.");
|
|
|
|
|
} else {
|
|
|
|
|
PADDLE_ENFORCE_EQ(label_dims[1], 1UL,
|
|
|
|
|
"If Attr(softLabel) == false, the 2nd dimension of "
|
|
|
|
|
PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1UL,
|
|
|
|
|
"If Attr(softLabel) == false, the last dimension of "
|
|
|
|
|
"Input(Label) should be 1.");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ctx->SetOutputDim("Y", {x_dims[0], 1});
|
|
|
|
|
auto out_dim_vec =
|
|
|
|
|
framework::vectorize(framework::slice_ddim(x_dims, 0, rank - 1));
|
|
|
|
|
out_dim_vec.push_back(1);
|
|
|
|
|
|
|
|
|
|
ctx->SetOutputDim("Y", framework::make_ddim(out_dim_vec));
|
|
|
|
|
ctx->ShareLoD("X", /*->*/ "Y");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -74,24 +79,28 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
|
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
|
|
|
auto label_dims = ctx->GetInputDim("Label");
|
|
|
|
|
auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
|
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(dy_dims.size(), 2, "Input(Y@Grad)'s rank should be 2.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
|
|
|
|
|
"The 1st dimension of Input(X) and Input(Label) should "
|
|
|
|
|
"be equal.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims[0], dy_dims[0],
|
|
|
|
|
"The 1st dimension of Input(X) and Input(Y@Grad) should "
|
|
|
|
|
"be equal.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(dy_dims[1], 1,
|
|
|
|
|
"The 2nd dimension of Input(Y@Grad) should be 1.");
|
|
|
|
|
int rank = x_dims.size();
|
|
|
|
|
PADDLE_ENFORCE_EQ(dy_dims.size(), rank,
|
|
|
|
|
"Input(Y@Grad) and Input(X) should have the same rank.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(label_dims.size(), rank,
|
|
|
|
|
"Input(Label) and Input(X) should have the same rank.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
|
|
|
|
|
framework::slice_ddim(label_dims, 0, rank - 1),
|
|
|
|
|
"The Input(X) and Input(Label) should have the same "
|
|
|
|
|
"shape except the last dimension.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
|
|
|
|
|
framework::slice_ddim(dy_dims, 0, rank - 1),
|
|
|
|
|
"The Input(X) and Input(Y@Grad) should have the same "
|
|
|
|
|
"shape except the last dimension.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1,
|
|
|
|
|
"The last dimension of Input(Y@Grad) should be 1.");
|
|
|
|
|
if (ctx->Attrs().Get<bool>("soft_label")) {
|
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1],
|
|
|
|
|
"When Attr(soft_label) == true, the 2nd dimension of "
|
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
|
|
|
|
|
"When Attr(soft_label) == true, the last dimension of "
|
|
|
|
|
"Input(X) and Input(Label) should be equal.");
|
|
|
|
|
} else {
|
|
|
|
|
PADDLE_ENFORCE_EQ(label_dims[1], 1,
|
|
|
|
|
"When Attr(soft_label) == false, the 2nd dimension of "
|
|
|
|
|
PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1,
|
|
|
|
|
"When Attr(soft_label) == false, the last dimension of "
|
|
|
|
|
"Input(Label) should be 1.");
|
|
|
|
|
}
|
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
|
|
|
|
@ -113,18 +122,20 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
|
public:
|
|
|
|
|
void Make() override {
|
|
|
|
|
AddInput("X",
|
|
|
|
|
"(Tensor, default Tensor<float>), a 2-D tensor with shape [N x D],"
|
|
|
|
|
" where N is the batch size and D is the number of classes. "
|
|
|
|
|
"This input is a probability computed by the previous operator, "
|
|
|
|
|
"which is almost always the result of a softmax operator.");
|
|
|
|
|
AddInput("Label",
|
|
|
|
|
"(Tensor), the ground truth which is a 2-D tensor. When "
|
|
|
|
|
"soft_label is set to false, Label is a Tensor<int64> with shape "
|
|
|
|
|
"[N x 1]. When soft_label is set to true, Label is a "
|
|
|
|
|
"Tensor<float/double> with shape [N x D].");
|
|
|
|
|
"(Tensor, default Tensor<float>), a tensor whose last dimension "
|
|
|
|
|
"size is equal to the number of classes. This input is a "
|
|
|
|
|
"probability computed by the previous operator, which is almost "
|
|
|
|
|
"always the result of a softmax operator.");
|
|
|
|
|
AddInput(
|
|
|
|
|
"Label",
|
|
|
|
|
"(Tensor), the tensor which represents the ground truth. It has the "
|
|
|
|
|
"same shape with 'X' except the last dimension. When soft_label is set "
|
|
|
|
|
"to false, the last dimension size is 1; when soft_label is set to "
|
|
|
|
|
"true, the last dimension size is equal to the number of classes.");
|
|
|
|
|
AddOutput("Y",
|
|
|
|
|
"(Tensor, default Tensor<float>), a 2-D tensor with shape "
|
|
|
|
|
"[N x 1]. The cross entropy loss.");
|
|
|
|
|
"(Tensor, default Tensor<float>), a tensor whose shape is same "
|
|
|
|
|
"with 'X' except that the last dimension size is 1. It "
|
|
|
|
|
"represents the cross entropy loss.");
|
|
|
|
|
AddAttr<bool>("soft_label",
|
|
|
|
|
"(bool, default false), a flag indicating whether to "
|
|
|
|
|
"interpretate the given labels as soft labels.")
|
|
|
|
@ -132,6 +143,12 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
|
AddComment(R"DOC(
|
|
|
|
|
CrossEntropy Operator.
|
|
|
|
|
|
|
|
|
|
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs.
|
|
|
|
|
The matrix's second dimension(row length) is as same as the original last
|
|
|
|
|
dimension, and the first dimension(column length) is the product of all other
|
|
|
|
|
original dimensions. Then the softmax computation will take palce on each raw
|
|
|
|
|
of flattened matrixs.
|
|
|
|
|
|
|
|
|
|
It supports both standard cross-entropy and soft-label cross-entropy loss
|
|
|
|
|
computation.
|
|
|
|
|
1) One-hot cross-entropy:
|
|
|
|
|