parent
170ac721b6
commit
7c67146632
@ -0,0 +1,131 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/sequence_pad_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class SequencePadOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||
"Input(X) of SequencePadOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Output(Out) of SequencePadOp should not be null.");
|
||||
|
||||
auto x_dims = ctx->GetInputDim("X");
|
||||
|
||||
PADDLE_ENFORCE_EQ(x_dims.size(), 2,
|
||||
"Only support 2-D tensor, rank of Input(X) should be 2.");
|
||||
|
||||
auto out_dims = x_dims;
|
||||
|
||||
if (ctx->IsRuntime()) {
|
||||
framework::Variable* x_var =
|
||||
boost::get<framework::Variable*>(ctx->GetInputVarPtrs("X")[0]);
|
||||
|
||||
auto& x_lod = x_var->Get<LoDTensor>().lod();
|
||||
|
||||
PADDLE_ENFORCE_GE(x_lod.size(), 1,
|
||||
"Input(X) should be sequences containing lod.");
|
||||
|
||||
auto last_level_lod = x_lod[x_lod.size() - 1];
|
||||
size_t max_len = 0;
|
||||
|
||||
for (size_t i = 1; i < last_level_lod.size(); ++i) {
|
||||
auto seq_len = last_level_lod[i] - last_level_lod[i - 1];
|
||||
max_len = max_len < seq_len ? seq_len : max_len;
|
||||
}
|
||||
|
||||
out_dims[0] = max_len * (last_level_lod.size() - 1);
|
||||
} else {
|
||||
framework::VarDesc* x_desc =
|
||||
boost::get<framework::VarDesc*>(ctx->GetInputVarPtrs("X")[0]);
|
||||
PADDLE_ENFORCE_GE(x_desc->GetLoDLevel(), 1,
|
||||
"Input(X) should be sequences containing lod.");
|
||||
out_dims[0] = -1;
|
||||
}
|
||||
|
||||
ctx->SetOutputDim("Out", out_dims);
|
||||
}
|
||||
|
||||
protected:
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
return framework::OpKernelType(
|
||||
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
|
||||
ctx.device_context());
|
||||
}
|
||||
};
|
||||
|
||||
class SequencePadOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
SequencePadOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X",
|
||||
"(LoDTensor, default LoDTensor<float>) Input variable which "
|
||||
"should contain lod information. Length of each sequence would "
|
||||
"be computed from the most bottom level lod.");
|
||||
AddOutput("Out",
|
||||
"(Tensor) Output variable which would be a common tensor "
|
||||
"without lod. Each sequence would be padded to the maximum "
|
||||
"length.");
|
||||
AddAttr<float>("pad_value",
|
||||
"(float, default 0.0) Value to be padded "
|
||||
"to the end of each sequence.");
|
||||
AddComment(R"DOC(
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class SequencePadGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||
"Input(X) of SequencePadGradOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) of SequencePadGradOp should not be null.");
|
||||
|
||||
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
||||
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
||||
ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OPERATOR(sequence_pad, ops::SequencePadOp, ops::SequencePadOpMaker,
|
||||
paddle::framework::DefaultGradOpDescMaker<true>);
|
||||
REGISTER_OPERATOR(sequence_pad_grad, ops::SequencePadGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
sequence_pad,
|
||||
ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, double>,
|
||||
ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int>,
|
||||
ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
sequence_pad_grad,
|
||||
ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, double>,
|
||||
ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int>,
|
||||
ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
@ -0,0 +1,23 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/sequence_pad_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
sequence_pad,
|
||||
ops::SequencePadOpKernel<paddle::platform::CUDADeviceContext, float>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
sequence_pad_grad,
|
||||
ops::SequencePadGradOpKernel<paddle::platform::CUDADeviceContext, float>);
|
@ -0,0 +1,97 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/memory/memcpy.h"
|
||||
#include "paddle/fluid/operators/math/math_function.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using LoDTensor = framework::LoDTensor;
|
||||
using LoD = framework::LoD;
|
||||
|
||||
// @TODO clean code
|
||||
template <typename DeviceContext, typename T>
|
||||
class SequencePadOpKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* x_ptr = ctx.Input<LoDTensor>("X");
|
||||
auto* out_ptr = ctx.Output<LoDTensor>("Out");
|
||||
|
||||
out_ptr->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
T pad_value = static_cast<T>(ctx.Attr<float>("pad_value"));
|
||||
|
||||
math::SetConstant<DeviceContext, T> set_func;
|
||||
set_func(ctx.template device_context<DeviceContext>(), out_ptr, pad_value);
|
||||
|
||||
auto& x_lod = x_ptr->lod();
|
||||
auto& x_last_level_lod = x_lod[x_lod.size() - 1];
|
||||
auto seq_num = x_last_level_lod.size() - 1;
|
||||
auto max_len = out_ptr->dims()[0] / seq_num;
|
||||
|
||||
PADDLE_ENFORCE_EQ(max_len * seq_num, out_ptr->dims()[0],
|
||||
"First dimension of `Out` should be equal to "
|
||||
"maximum length mulplied by sequence number.");
|
||||
|
||||
for (size_t i = 1; i < x_last_level_lod.size(); ++i) {
|
||||
auto x_start = x_last_level_lod[i - 1];
|
||||
auto x_end = x_last_level_lod[i];
|
||||
auto out_start = (i - 1) * max_len;
|
||||
auto out_end = out_start + (x_end - x_start);
|
||||
auto x_sub_tensor = x_ptr->Slice(x_start, x_end);
|
||||
auto out_sub_tensor = out_ptr->Slice(out_start, out_end);
|
||||
framework::TensorCopy(x_sub_tensor, ctx.GetPlace(), &out_sub_tensor);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SequencePadGradOpKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* x_ptr = ctx.Input<LoDTensor>("X");
|
||||
auto* g_out_ptr = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
|
||||
auto* g_x_ptr = ctx.Output<LoDTensor>(framework::GradVarName("X"));
|
||||
|
||||
math::SetConstant<DeviceContext, T> set_func;
|
||||
set_func(ctx.template device_context<DeviceContext>(), g_x_ptr,
|
||||
static_cast<T>(0));
|
||||
|
||||
auto& x_lod = x_ptr->lod();
|
||||
auto& x_last_level_lod = x_lod[x_lod.size() - 1];
|
||||
auto seq_num = x_last_level_lod.size() - 1;
|
||||
int64_t max_len = g_out_ptr->dims()[0] / seq_num;
|
||||
|
||||
PADDLE_ENFORCE_EQ(max_len * seq_num, g_out_ptr->dims()[0],
|
||||
"First dimension of `Out` should be equal to "
|
||||
"maximum length mulplied by sequence number.");
|
||||
|
||||
for (size_t i = 1; i < x_last_level_lod.size(); ++i) {
|
||||
auto x_start = x_last_level_lod[i - 1];
|
||||
auto x_end = x_last_level_lod[i];
|
||||
auto out_start = (i - 1) * max_len;
|
||||
auto out_end = out_start + (x_end - x_start);
|
||||
|
||||
auto g_out_sub = g_out_ptr->Slice(out_start, out_end);
|
||||
auto g_x_sub = g_x_ptr->Slice(x_start, x_end);
|
||||
framework::TensorCopy(g_x_sub, ctx.GetPlace(), &g_out_sub);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
Loading…
Reference in new issue