commit
7ca6c8840e
@ -0,0 +1,9 @@
|
||||
MOBILE
|
||||
======
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
cross_compiling_for_android_cn.md
|
||||
cross_compiling_for_ios_cn.md
|
||||
cross_compiling_for_raspberry_cn.md
|
@ -0,0 +1,8 @@
|
||||
MOBILE
|
||||
======
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
cross_compiling_for_android_en.md
|
||||
cross_compiling_for_raspberry_en.md
|
@ -1,111 +0,0 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/conv2d_transpose_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
void Conv2DTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Input"),
|
||||
"Input(Input) of Conv2DTransposeOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Filter"),
|
||||
"Input(Filter) of Conv2DTransposeOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Output"),
|
||||
"Output(Output) of Conv2DTransposeOp should not be null.");
|
||||
|
||||
auto in_dims = ctx->GetInputDim("Input");
|
||||
auto filter_dims = ctx->GetInputDim("Filter");
|
||||
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
|
||||
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
|
||||
|
||||
for (size_t i = 0; i < paddings.size(); ++i) {
|
||||
PADDLE_ENFORCE_EQ(paddings[i], 0,
|
||||
"No Padding allowed in conv transpose op.");
|
||||
}
|
||||
|
||||
PADDLE_ENFORCE_EQ(in_dims.size(), 4,
|
||||
"Conv2DTransposeOp input should be 4-D tensor.");
|
||||
PADDLE_ENFORCE_EQ(filter_dims.size(), 4,
|
||||
"Conv2DTransposeOp filter should be 4-D tensor.");
|
||||
PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
|
||||
"input and kernel input dimension should be equal.");
|
||||
|
||||
auto output_height = (in_dims[2] - 1) * strides[0] + filter_dims[2];
|
||||
auto output_width = (in_dims[3] - 1) * strides[1] + filter_dims[3];
|
||||
ctx->SetOutputDim("Output",
|
||||
{in_dims[0], filter_dims[1], output_height, output_width});
|
||||
}
|
||||
|
||||
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
|
||||
framework::OpProto* proto, framework::OpAttrChecker* op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput(
|
||||
"Input",
|
||||
"(Tensor) The input tensor of convolution transpose operator. "
|
||||
"The format of input tensor is NCHW, where N is batch size, C is the "
|
||||
"number of input channels, H is the height of the image, and "
|
||||
"W is the width of the image.");
|
||||
AddInput("Filter",
|
||||
"(Tensor) The filter tensor of convolution transpose operator."
|
||||
"The format of the filter tensor is CMHW, where C is the number of "
|
||||
"output image channels, M is the number of input image channels, "
|
||||
"H is the height of the filter, and W is the width of the filter. "
|
||||
"We enforce groups number == 1 and padding == 0 in "
|
||||
"the convolution transpose scenario.");
|
||||
AddOutput("Output",
|
||||
"(Tensor) The output tensor of convolution transpose operator."
|
||||
"The format of output tensor is also NCHW.");
|
||||
AddAttr<std::vector<int>>("strides",
|
||||
"strides of convolution transpose operator.")
|
||||
.SetDefault({1, 1});
|
||||
AddAttr<std::vector<int>>("paddings",
|
||||
"paddings of convolution transpose operator.")
|
||||
.SetDefault({0, 0});
|
||||
AddComment(R"DOC(
|
||||
Convolution Transpose Operator.
|
||||
|
||||
The convolution transpose operation calculates the output based on the input,
|
||||
filter, strides, paddings, and groups parameters. The size of each dimension
|
||||
of the parameters is checked in the infer-shape method.
|
||||
|
||||
)DOC");
|
||||
}
|
||||
|
||||
void Conv2DTransposeOpGrad::InferShape(
|
||||
framework::InferShapeContext* ctx) const {
|
||||
auto in_dims = ctx->GetInputDim("Input");
|
||||
auto filter_dims = ctx->GetInputDim("Filter");
|
||||
if (ctx->HasOutput(framework::GradVarName("Input"))) {
|
||||
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
|
||||
}
|
||||
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
|
||||
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP(conv2d_transpose, ops::Conv2DTransposeOp,
|
||||
ops::Conv2DTransposeOpMaker, conv2d_transpose_grad,
|
||||
ops::Conv2DTransposeOpGrad);
|
||||
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
conv2d_transpose,
|
||||
ops::GemmConv2DTransposeKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
conv2d_transpose_grad,
|
||||
ops::GemmConv2DTransposeGradKernel<paddle::platform::CPUPlace, float>);
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue