|
|
|
@ -69,9 +69,9 @@ void TestWord2vecPrediction(const std::string& model_path) {
|
|
|
|
|
std::vector<PaddleTensor> outputs;
|
|
|
|
|
CHECK(predictor->Run(slots, &outputs));
|
|
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(outputs.size(), 1UL);
|
|
|
|
|
PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
|
|
|
|
|
// Check the output buffer size and result of each tid.
|
|
|
|
|
PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
|
|
|
|
|
PADDLE_ENFORCE_EQ(outputs.front().data.length(), 33168UL);
|
|
|
|
|
float result[5] = {0.00129761, 0.00151112, 0.000423564, 0.00108815,
|
|
|
|
|
0.000932706};
|
|
|
|
|
const size_t num_elements = outputs.front().data.length() / sizeof(float);
|
|
|
|
@ -80,8 +80,8 @@ void TestWord2vecPrediction(const std::string& model_path) {
|
|
|
|
|
i++) {
|
|
|
|
|
LOG(INFO) << "data: "
|
|
|
|
|
<< static_cast<float*>(outputs.front().data.data())[i];
|
|
|
|
|
PADDLE_ENFORCE(static_cast<float*>(outputs.front().data.data())[i],
|
|
|
|
|
result[i]);
|
|
|
|
|
PADDLE_ENFORCE_EQ(static_cast<float*>(outputs.front().data.data())[i],
|
|
|
|
|
result[i]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|