commit
7d21d8c022
@ -0,0 +1,68 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/fill_constant_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class FillConstantOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext *ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Output(Out) of FillConstantOp should not be null.");
|
||||
auto &shape = ctx->Attrs().Get<std::vector<int>>("shape");
|
||||
std::vector<int64_t> shape_int64(shape.size(), 0);
|
||||
std::transform(shape.begin(), shape.end(), shape_int64.begin(),
|
||||
[](int a) { return static_cast<int64_t>(a); });
|
||||
auto dims = framework::make_ddim(shape_int64);
|
||||
ctx->SetOutputDim("Out", dims);
|
||||
}
|
||||
|
||||
framework::DataType IndicateDataType(
|
||||
const framework::ExecutionContext &ctx) const override {
|
||||
return static_cast<framework::DataType>(ctx.Attr<int>("dataType"));
|
||||
}
|
||||
};
|
||||
|
||||
class FillConstantOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
FillConstantOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddAttr<int>("dataType",
|
||||
"(int, default 5 (FP32)) "
|
||||
"Output data type")
|
||||
.SetDefault(framework::DataType::FP32);
|
||||
AddAttr<std::vector<int>>("shape", "(vector<int>) The shape of the output");
|
||||
AddAttr<float>("value", "(float, default 0) The value to be filled")
|
||||
.SetDefault(0.0f);
|
||||
AddOutput("Out",
|
||||
"(Tensor) Tensor of specified shape will be filled "
|
||||
"with the specified value");
|
||||
AddComment(R"DOC(Fill up a variable with specified constant value.)DOC");
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_WITHOUT_GRADIENT(fill_constant, ops::FillConstantOp,
|
||||
ops::FillConstantOpMaker);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
fill_constant,
|
||||
ops::FillConstantOpKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,22 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/operators/fill_constant_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
fill_constant,
|
||||
ops::FillConstantOpKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,37 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename Place, typename T>
|
||||
class FillConstantOpKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* out = ctx.Output<framework::Tensor>("Out");
|
||||
out->mutable_data<T>(ctx.GetPlace());
|
||||
auto value = ctx.Attr<T>("value");
|
||||
|
||||
auto out_eigen = framework::EigenVector<T>::Flatten(*out);
|
||||
auto place = ctx.GetEigenDevice<Place>();
|
||||
out_eigen.device(place) = out_eigen.constant(static_cast<T>(value));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,113 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/operators/net_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class InterpOp : public NetOp {
|
||||
public:
|
||||
InterpOp(const std::string &type, const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: NetOp(type, inputs, outputs, attrs) {
|
||||
PADDLE_ENFORCE_NE(Input("X"), framework::kEmptyVarName,
|
||||
"Input(X) of InterpOp should not be null.");
|
||||
PADDLE_ENFORCE_NE(Input("Y"), framework::kEmptyVarName,
|
||||
"Input(Y) of InterpOp should not be null.");
|
||||
PADDLE_ENFORCE_NE(Input("W"), framework::kEmptyVarName,
|
||||
"Input(W) of InterpOp should not be null.");
|
||||
PADDLE_ENFORCE_NE(Output("SubOut"), framework::kEmptyVarName,
|
||||
"Output(SubOut) of InterpOp should not be null.");
|
||||
PADDLE_ENFORCE_NE(Output("MulOut"), framework::kEmptyVarName,
|
||||
"Output(MulOut) of InterpOp should not be null.");
|
||||
PADDLE_ENFORCE_NE(Output("Out"), framework::kEmptyVarName,
|
||||
"Output(Out) of InterpOp should not be null.");
|
||||
|
||||
// SubOut = X - Y
|
||||
auto x = Input("X");
|
||||
auto y = Input("Y");
|
||||
auto sub_out = Output("SubOut");
|
||||
AppendOp(framework::OpRegistry::CreateOp(
|
||||
"elementwise_sub", {{"X", {x}}, {"Y", {y}}}, {{"Out", {sub_out}}}, {}));
|
||||
|
||||
// MulOut = SubOut * W = (X - Y) * W
|
||||
auto w = Input("W");
|
||||
auto mul_out = Output("MulOut");
|
||||
AppendOp(framework::OpRegistry::CreateOp(
|
||||
"elementwise_mul", {{"X", {sub_out}}, {"Y", {w}}}, {{"Out", {mul_out}}},
|
||||
{{"axis", 0}}));
|
||||
|
||||
// Out = MulOut + Y = (X - Y) * W + Y = X * W + Y * (1 - W)
|
||||
AppendOp(framework::OpRegistry::CreateOp("elementwise_add",
|
||||
{{"X", {mul_out}}, {"Y", {y}}},
|
||||
{{"Out", {Output("Out")}}}, {}));
|
||||
|
||||
CompleteAddOp(false);
|
||||
}
|
||||
};
|
||||
|
||||
class InterpOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
InterpOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X",
|
||||
"(Tensor), 2-D Matrix of shape [batch_size, data_dim]"
|
||||
"containing data samples, the first input of interp_op");
|
||||
AddInput("Y",
|
||||
"(Tensor), 2-D Matrix of shape `[batch_size, data_dim]`"
|
||||
"containing data samples, the second input of interp_op");
|
||||
AddInput("W",
|
||||
"(Tensor), 1-D Vector of shape [batch_size],"
|
||||
"the interpolated values in the half-open interval [0.0, 1.0)");
|
||||
AddOutput("SubOut",
|
||||
"(Tensor), the intermediate subtraction outputs, saving X - Y.")
|
||||
.AsIntermediate();
|
||||
AddOutput("MulOut",
|
||||
"(Tensor), the intermediate multiplication outputs,"
|
||||
"saving the elementwise multiplication of (X - Y) and W.")
|
||||
.AsIntermediate();
|
||||
AddOutput("Out",
|
||||
"(Tensor), the output of interp_op, same shape with X,"
|
||||
"returns the first-dimensional piecewise linear interpolant "
|
||||
"between X and Y");
|
||||
AddComment(R"DOC(
|
||||
Linear Interpolation with two inputs, used in NEURAL TURING MACHINE.
|
||||
|
||||
Equation:
|
||||
Out.row[i] = X.row[i] * W[i] + Y.row[i] * (1 - W[i])
|
||||
= (X.row[i] - Y.row[i]) * W[i] + Y.row[i]
|
||||
|
||||
Example:
|
||||
X = [[1,2],[3,4]],
|
||||
Y = [[2,1],[4,3]],
|
||||
W = [0.3, 0.4]
|
||||
|
||||
Then, Out = [[1.7,1.3],[3.6,3.4]]
|
||||
|
||||
where 1.7 = 1*0.3+2*(1-0.3),
|
||||
1.3 = 2*0.3+1*(1-0.3),
|
||||
3.6 = 3*0.4+4*(1-0.4),
|
||||
3.4 = 4*0.4+3*(1-0.4)
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_WITHOUT_GRADIENT(interp, ops::InterpOp, ops::InterpOpMaker);
|
@ -0,0 +1,35 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestFillConstantOp1(OpTest):
|
||||
def setUp(self):
|
||||
'''Test fill_constant op with specified value
|
||||
'''
|
||||
self.op_type = "fill_constant"
|
||||
|
||||
self.inputs = {}
|
||||
self.attrs = {'shape': [123, 92], 'value': 3.8}
|
||||
self.outputs = {'Out': np.full((123, 92), 3.8)}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
class TestFillConstantOp2(OpTest):
|
||||
def setUp(self):
|
||||
'''Test fill_constant op with default value
|
||||
'''
|
||||
self.op_type = "fill_constant"
|
||||
|
||||
self.inputs = {}
|
||||
self.attrs = {'shape': [123, 92]}
|
||||
self.outputs = {'Out': np.full((123, 92), 0.0)}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -0,0 +1,28 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestInterpOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "interp"
|
||||
x = np.random.random((2, 3)).astype("float32")
|
||||
y = np.random.random((2, 3)).astype("float32")
|
||||
w = np.random.random(2).astype("float32")
|
||||
|
||||
sub_out = x - y
|
||||
mul_out = sub_out * w.reshape(2, 1)
|
||||
out = mul_out + y
|
||||
|
||||
self.inputs = {'X': x, 'Y': y, 'W': w}
|
||||
self.outputs = {'Out': out, 'SubOut': sub_out, 'MulOut': mul_out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad_normal(self):
|
||||
self.check_grad(['X', 'Y'], 'Out')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue