Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into develop
commit
7e34b8e366
@ -0,0 +1,154 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/framework/operator.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
class RNNMemoryHelperOp : public framework::OperatorBase {
|
||||
public:
|
||||
RNNMemoryHelperOp(const std::string &type,
|
||||
const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: OperatorBase(type, inputs, outputs, attrs) {}
|
||||
void Run(const framework::Scope &scope,
|
||||
const platform::DeviceContext &dev_ctx) const override {
|
||||
auto mem_var_name = Input("X");
|
||||
auto *mem_var = scope.FindVar(mem_var_name);
|
||||
PADDLE_ENFORCE(mem_var != nullptr,
|
||||
"Cannot find mem_var in scope, mem_var_name is %s",
|
||||
mem_var_name);
|
||||
|
||||
auto out_name = this->Output("Out");
|
||||
auto *out_var = scope.FindVar(out_name);
|
||||
PADDLE_ENFORCE(out_var != nullptr,
|
||||
"Cannot find out_var in scope, out_var_name is %s",
|
||||
out_name);
|
||||
|
||||
auto *out_tensor = out_var->GetMutable<framework::LoDTensor>();
|
||||
auto &mem_tensor = mem_var->Get<framework::LoDTensor>();
|
||||
out_tensor->ShareDataWith(mem_tensor);
|
||||
out_tensor->set_lod(mem_tensor.lod());
|
||||
}
|
||||
};
|
||||
|
||||
class RNNMemoryHelperOpShapeInference : public framework::InferShapeBase {
|
||||
public:
|
||||
void operator()(framework::InferShapeContext *ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"), "");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"), "");
|
||||
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
|
||||
ctx->ShareLoD("X", /*->*/ "Out");
|
||||
}
|
||||
};
|
||||
|
||||
class RNNMemoryHelperOpInfoMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
RNNMemoryHelperOpInfoMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "");
|
||||
AddOutput("Out", "");
|
||||
AddAttr<int>("data_type",
|
||||
"(int, default 5 (FP32)) "
|
||||
"Output data type")
|
||||
.SetDefault(framework::DataType::FP32);
|
||||
AddComment("");
|
||||
}
|
||||
};
|
||||
|
||||
class RNNMemoryHelperGradOp : public framework::OperatorBase {
|
||||
public:
|
||||
RNNMemoryHelperGradOp(const std::string &type,
|
||||
const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: OperatorBase(type, inputs, outputs, attrs) {}
|
||||
void Run(const framework::Scope &scope,
|
||||
const platform::DeviceContext &dev_ctx) const override {
|
||||
auto out_grad_var_name = Input(framework::GradVarName("Out"));
|
||||
auto *out_grad_var = scope.FindVar(out_grad_var_name);
|
||||
|
||||
auto in_grad_var_name = Output(framework::GradVarName("X"));
|
||||
auto *in_grad_var = scope.FindVar(in_grad_var_name);
|
||||
PADDLE_ENFORCE(in_grad_var != nullptr,
|
||||
"Cannot find in_grad_var in scope, name is %s",
|
||||
in_grad_var_name);
|
||||
|
||||
if (out_grad_var == nullptr) {
|
||||
VLOG(5) << "Using fill constant 0 as starting gradient";
|
||||
auto in_var_name = Input("X");
|
||||
auto *in_var = scope.FindVar(in_var_name);
|
||||
auto &in_var_tensor = in_var->Get<framework::LoDTensor>();
|
||||
|
||||
framework::AttributeMap attrs;
|
||||
attrs["data_type"] = framework::ToDataType(in_var_tensor.type());
|
||||
attrs["shape"] = framework::vectorize2int(in_var_tensor.dims());
|
||||
attrs["value"] = 0.0f;
|
||||
|
||||
auto zero_op = framework::OpRegistry::CreateOp(
|
||||
"fill_constant", {}, {{"Out", {in_grad_var_name}}}, attrs);
|
||||
zero_op->Run(scope, dev_ctx);
|
||||
} else {
|
||||
auto &out_grad_tensor = out_grad_var->Get<framework::LoDTensor>();
|
||||
auto *in_grad_tensor = in_grad_var->GetMutable<framework::LoDTensor>();
|
||||
in_grad_tensor->ShareDataWith(out_grad_tensor);
|
||||
in_grad_tensor->set_lod(out_grad_tensor.lod());
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class RNNMemoryHelperGradOpInfoMaker
|
||||
: public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
RNNMemoryHelperGradOpInfoMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput(framework::GradVarName("Out"), "");
|
||||
AddInput("X", "");
|
||||
AddInput("Out", "");
|
||||
AddOutput(framework::GradVarName("X"), "");
|
||||
AddAttr<int>("data_type",
|
||||
"(int, default 5 (FP32)) "
|
||||
"Output data type")
|
||||
.SetDefault(framework::DataType::FP32);
|
||||
AddComment("");
|
||||
}
|
||||
};
|
||||
|
||||
class RNNMemoryHelperGradOpShapeInference : public framework::InferShapeBase {
|
||||
public:
|
||||
void operator()(framework::InferShapeContext *ctx) const override {
|
||||
auto x_grad_name = framework::GradVarName("X");
|
||||
auto out_grad_name = framework::GradVarName("Out");
|
||||
PADDLE_ENFORCE(ctx->HasInput(out_grad_name), "");
|
||||
PADDLE_ENFORCE(ctx->HasOutput(x_grad_name), "");
|
||||
ctx->SetOutputDim(x_grad_name, ctx->GetInputDim(out_grad_name));
|
||||
ctx->ShareLoD(out_grad_name, /*->*/ x_grad_name);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_OPERATOR(rnn_memory_helper, paddle::operators::RNNMemoryHelperOp,
|
||||
paddle::operators::RNNMemoryHelperOpInfoMaker,
|
||||
paddle::operators::RNNMemoryHelperOpShapeInference,
|
||||
paddle::framework::DefaultGradOpDescMaker<true>);
|
||||
REGISTER_OPERATOR(rnn_memory_helper_grad,
|
||||
paddle::operators::RNNMemoryHelperGradOp,
|
||||
paddle::operators::RNNMemoryHelperGradOpInfoMaker,
|
||||
paddle::operators::RNNMemoryHelperGradOpShapeInference);
|
@ -0,0 +1,130 @@
|
||||
import unittest
|
||||
|
||||
from paddle.v2.framework.framework import Program
|
||||
from paddle.v2.framework.executor import Executor
|
||||
from paddle.v2.framework.backward import append_backward_ops
|
||||
import numpy as np
|
||||
import paddle.v2.framework.core as core
|
||||
|
||||
|
||||
def create_tensor(np_data, place):
|
||||
tensor = core.LoDTensor()
|
||||
tensor.set(np_data, place)
|
||||
return tensor
|
||||
|
||||
|
||||
class RNNMemoryHelperOpTest(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.program = Program()
|
||||
self.place = core.CPUPlace()
|
||||
|
||||
self.X = self.program.global_block().create_var(
|
||||
name='X', shape=[2, 3], dtype='float32')
|
||||
self.Out = self.program.global_block().create_var(
|
||||
name='Out', shape=[2, 3], dtype='float32')
|
||||
self.program.global_block().append_op(
|
||||
type='rnn_memory_helper',
|
||||
inputs={"X": self.X},
|
||||
outputs={"Out": self.Out},
|
||||
attrs={})
|
||||
|
||||
def test_forward(self):
|
||||
x_np = np.random.normal(size=(2, 3)).astype("float32")
|
||||
self.feed_map = {'X': create_tensor(x_np, self.place)}
|
||||
self.fetch_list = [self.Out]
|
||||
exe = Executor(self.place)
|
||||
out = exe.run(self.program,
|
||||
feed=self.feed_map,
|
||||
fetch_list=self.fetch_list)
|
||||
np.isclose(np.array(out[0]), x_np, rtol=1e-5)
|
||||
|
||||
|
||||
class RNNMemoryHelperGradOpTest(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.program = Program()
|
||||
self.place = core.CPUPlace()
|
||||
|
||||
self.input_names = ['X', 'Out', 'Out@GRAD']
|
||||
self.input_vars = {
|
||||
name: self.program.global_block().create_var(
|
||||
name=name, shape=[2, 3], dtype='float32')
|
||||
for name in self.input_names
|
||||
}
|
||||
|
||||
self.output_names = ['X@GRAD']
|
||||
self.output_vars = {
|
||||
name: self.program.global_block().create_var(
|
||||
name=name, shape=[2, 3], dtype='float32')
|
||||
for name in self.output_names
|
||||
}
|
||||
|
||||
self.program.global_block().append_op(
|
||||
type='rnn_memory_helper_grad',
|
||||
inputs=self.input_vars,
|
||||
outputs=self.output_vars,
|
||||
attrs={})
|
||||
|
||||
def test_backward(self):
|
||||
self.feed_map = {
|
||||
name: create_tensor(
|
||||
np.random.normal(size=(2, 3)).astype("float32"), self.place)
|
||||
for name in self.input_names
|
||||
}
|
||||
self.fetch_list = [self.output_vars['X@GRAD']]
|
||||
|
||||
exe = Executor(self.place)
|
||||
out = exe.run(self.program,
|
||||
feed=self.feed_map,
|
||||
fetch_list=self.fetch_list)
|
||||
np.isclose(np.array(out[0]), self.feed_map['Out@GRAD'], rtol=1e-5)
|
||||
|
||||
|
||||
class RNNMemoryHelperGradOpWithoutInputTest(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.program = Program()
|
||||
self.fake_program = Program()
|
||||
self.place = core.CPUPlace()
|
||||
|
||||
self.input_names = ['X', 'Out']
|
||||
self.input_vars = {
|
||||
name: self.program.global_block().create_var(
|
||||
name=name, shape=[2, 3], dtype='float32')
|
||||
for name in self.input_names
|
||||
}
|
||||
self.input_vars["Out@GRAD"] = \
|
||||
self.fake_program.global_block().create_var(
|
||||
name="Out@GRAD", shape=[2, 3], dtype='float32')
|
||||
|
||||
self.output_names = ['X@GRAD']
|
||||
self.output_vars = {
|
||||
name: self.program.global_block().create_var(
|
||||
name=name, shape=[2, 3], dtype='float32')
|
||||
for name in self.output_names
|
||||
}
|
||||
|
||||
self.program.global_block().append_op(
|
||||
type='rnn_memory_helper_grad',
|
||||
inputs=self.input_vars,
|
||||
outputs=self.output_vars,
|
||||
attrs={})
|
||||
|
||||
def test_backward(self):
|
||||
self.feed_map = {
|
||||
name: create_tensor(
|
||||
np.random.normal(size=(2, 3)).astype("float32"), self.place)
|
||||
for name in ['X', 'Out']
|
||||
}
|
||||
self.fetch_list = [self.output_vars['X@GRAD']]
|
||||
|
||||
exe = Executor(self.place)
|
||||
out = exe.run(self.program,
|
||||
feed=self.feed_map,
|
||||
fetch_list=self.fetch_list)
|
||||
np.isclose(
|
||||
np.array(out[0]),
|
||||
np.zeros(shape=(2, 3)).astype("float32"),
|
||||
rtol=1e-5)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue